These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29660586)

  • 1. Open external circuit for microbial fuel cell sensor to monitor the nitrate in aquatic environment.
    Wang D; Liang P; Jiang Y; Liu P; Miao B; Hao W; Huang X
    Biosens Bioelectron; 2018 Jul; 111():97-101. PubMed ID: 29660586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring.
    Adekunle A; Raghavan V; Tartakovsky B
    Bioelectrochemistry; 2019 Apr; 126():105-112. PubMed ID: 30540973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel microbial fuel cell sensor with biocathode sensing element.
    Jiang Y; Liang P; Liu P; Wang D; Miao B; Huang X
    Biosens Bioelectron; 2017 Aug; 94():344-350. PubMed ID: 28319901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].
    Wu F; Liu Z; Zhou B; Zhou SG; Rao LQ; Wang YQ
    Huan Jing Ke Xue; 2010 Jul; 31(7):1596-600. PubMed ID: 20825031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants.
    Yi Y; Xie B; Zhao T; Li Z; Stom D; Liu H
    Bioelectrochemistry; 2019 Feb; 125():71-78. PubMed ID: 30273855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.
    Jiang Y; Liang P; Zhang C; Bian Y; Yang X; Huang X; Girguis PR
    Bioresour Technol; 2015 Aug; 190():367-72. PubMed ID: 25965954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode.
    Wang J; Song X; Wang Y; Abayneh B; Li Y; Yan D; Bai J
    Bioresour Technol; 2016 Dec; 221():358-365. PubMed ID: 27658173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.
    Jiang Y; Liang P; Huang X; Ren ZJ
    Chemosphere; 2018 Jul; 203():21-25. PubMed ID: 29604426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation.
    Wang Y; Wen Q; Chen Y; Yin J; Duan T
    Appl Biochem Biotechnol; 2016 Dec; 180(7):1372-1385. PubMed ID: 27557903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial fuel cell soft sensor for real-time toxicity detection and monitoring.
    Adekunle A; Gomez Vidales A; Woodward L; Tartakovsky B
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12792-12802. PubMed ID: 33089465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality.
    Velasquez-Orta SB; Werner D; Varia JC; Mgana S
    Water Res; 2017 Jun; 117():9-17. PubMed ID: 28364654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron flux and microbial community in microbial fuel cells (open-circuit and closed-circuit modes) and fermentation.
    Yu J; Park Y; Lee T
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):979-83. PubMed ID: 25948050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor.
    Minami T; Sasaki Y; Minamiki T; Wakida SI; Kurita R; Niwa O; Tokito S
    Biosens Bioelectron; 2016 Jul; 81():87-91. PubMed ID: 26921557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes.
    Zhang Y; Angelidaki I
    Water Res; 2012 Dec; 46(19):6445-53. PubMed ID: 23034447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.
    Tong Y; He Z
    J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of external resistance on substrate removal and electricity generation in microbial fuel cell treating sulfide and nitrate simultaneously.
    Cai J; Qaisar M; Sun Y
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):238-249. PubMed ID: 31784879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring.
    Zhao T; Xie B; Yi Y; Liu H
    Bioresour Technol; 2019 Mar; 276():276-280. PubMed ID: 30640022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity.
    Shen YJ; Lefebvre O; Tan Z; Ng HY
    Water Sci Technol; 2012; 65(7):1223-8. PubMed ID: 22437019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC).
    Zhang J; Zheng P; Zhang M; Chen H; Chen T; Xie Z; Cai J; Abbas G
    Bioresour Technol; 2013 Dec; 149():44-50. PubMed ID: 24084203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting recalcitrant organic chemicals in water with microbial fuel cells and artificial neural networks.
    King ST; Sylvander M; Kheperu M; Racz L; Harper WF
    Sci Total Environ; 2014 Nov; 497-498():527-533. PubMed ID: 25155893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.