These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29660672)

  • 1. Biotechnological and protein-engineering implications of ancestral protein resurrection.
    Risso VA; Sanchez-Ruiz JM; Ozkan SB
    Curr Opin Struct Biol; 2018 Aug; 51():106-115. PubMed ID: 29660672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of protein assemblies within cells.
    Nguyen TK; Ueno T
    Curr Opin Struct Biol; 2018 Aug; 51():1-8. PubMed ID: 29316472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering ancestral protein hyperstability.
    Romero-Romero ML; Risso VA; Martinez-Rodriguez S; Ibarra-Molero B; Sanchez-Ruiz JM
    Biochem J; 2016 Oct; 473(20):3611-3620. PubMed ID: 27528732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of proteins with solid surfaces.
    Gray JJ
    Curr Opin Struct Biol; 2004 Feb; 14(1):110-5. PubMed ID: 15102457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein promiscuity and its implications for biotechnology.
    Nobeli I; Favia AD; Thornton JM
    Nat Biotechnol; 2009 Feb; 27(2):157-67. PubMed ID: 19204698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network.
    Alhindi T; Zhang Z; Ruelens P; Coenen H; Degroote H; Iraci N; Geuten K
    Sci Rep; 2017 Mar; 7():44948. PubMed ID: 28337996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thermostability and specificity of ancient proteins.
    Wheeler LC; Lim SA; Marqusee S; Harms MJ
    Curr Opin Struct Biol; 2016 Jun; 38():37-43. PubMed ID: 27288744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Conformational Dynamics and Allostery in Modulating Protein Evolution.
    Campitelli P; Modi T; Kumar S; Ozkan SB
    Annu Rev Biophys; 2020 May; 49():267-288. PubMed ID: 32075411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins.
    Risso VA; Gavira JA; Gaucher EA; Sanchez-Ruiz JM
    Proteins; 2014 Jun; 82(6):887-96. PubMed ID: 24710963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases.
    Risso VA; Gavira JA; Mejia-Carmona DF; Gaucher EA; Sanchez-Ruiz JM
    J Am Chem Soc; 2013 Feb; 135(8):2899-902. PubMed ID: 23394108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.
    Hobbs JK; Prentice EJ; Groussin M; Arcus VL
    J Mol Evol; 2015 Oct; 81(3-4):110-20. PubMed ID: 26349578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory evolution of protein conformational dynamics.
    Campbell EC; Correy GJ; Mabbitt PD; Buckle AM; Tokuriki N; Jackson CJ
    Curr Opin Struct Biol; 2018 Jun; 50():49-57. PubMed ID: 29120734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering.
    Gumulya Y; Gillam EM
    Biochem J; 2017 Jan; 474(1):1-19. PubMed ID: 28008088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProtASR: An Evolutionary Framework for Ancestral Protein Reconstruction with Selection on Folding Stability.
    Arenas M; Weber CC; Liberles DA; Bastolla U
    Syst Biol; 2017 Nov; 66(6):1054-1064. PubMed ID: 28057858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of protein evolution and their application to protein engineering.
    Glasner ME; Gerlt JA; Babbitt PC
    Adv Enzymol Relat Areas Mol Biol; 2007; 75():193-239, xii-xiii. PubMed ID: 17124868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating Mobility: a Paradigm for Protein Engineering?
    McAuley M; Timson DJ
    Appl Biochem Biotechnol; 2017 Jan; 181(1):83-90. PubMed ID: 27449223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution-Inspired Computational Design of Symmetric Proteins.
    Voet AR; Simoncini D; Tame JR; Zhang KY
    Methods Mol Biol; 2017; 1529():309-322. PubMed ID: 27914059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach.
    Garcia-Seisdedos H; Ibarra-Molero B; Sanchez-Ruiz JM
    PLoS Comput Biol; 2012; 8(6):e1002558. PubMed ID: 22719242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme.
    Zou T; Risso VA; Gavira JA; Sanchez-Ruiz JM; Ozkan SB
    Mol Biol Evol; 2015 Jan; 32(1):132-43. PubMed ID: 25312912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.