These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29660881)

  • 1. Differences in transport behavior of natural soil colloids of contrasting sizes from nanometer to micron and the environmental implications.
    Liu F; Xu B; He Y; Brookes PC; Tang C; Xu J
    Sci Total Environ; 2018 Sep; 634():802-810. PubMed ID: 29660881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.
    Cai L; Tong M; Wang X; Kim H
    Environ Sci Technol; 2014 Jul; 48(13):7323-32. PubMed ID: 24911544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.
    Guber AK; Pachepsky YA; Shelton DR; Yu O
    Appl Environ Microbiol; 2007 May; 73(10):3363-70. PubMed ID: 17369341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-SiO
    Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A
    J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.
    Syngouna VI; Chrysikopoulos CV
    J Colloid Interface Sci; 2015 Feb; 440():140-50. PubMed ID: 25460700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand.
    Torkzaban S; Wan J; Tokunaga TK; Bradford SA
    J Contam Hydrol; 2012 Aug; 136-137():86-95. PubMed ID: 22698948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humic acid-mediated transport of a typical soil passivation remediation product (chloropyromorphite) in saturated porous media.
    Li X; Zhang M; Li S; Wei W
    J Environ Sci (China); 2024 Jul; 141():51-62. PubMed ID: 38408834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.
    Guo P; Xu N; Li D; Huangfu X; Li Z
    Chemosphere; 2018 Aug; 204():327-334. PubMed ID: 29674144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling transport of graphene oxide nanoparticles in saturated sand columns.
    Qi Z; Zhang L; Wang F; Hou L; Chen W
    Environ Toxicol Chem; 2014 May; 33(5):998-1004. PubMed ID: 24453090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Klitzke S; Lang F; Vogel HJ
    J Contam Hydrol; 2016 Dec; 195():31-39. PubMed ID: 27871667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the effects of Ca2+ and clay-associated organic carbon on the stability of colloids from topsoils.
    Séquaris JM
    J Colloid Interface Sci; 2010 Mar; 343(2):408-14. PubMed ID: 20079501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite influences of mineral-associated and dissolved organic matter on the transport of hydroxyapatite nanoparticles through soil and aggregates.
    Xu S; Chen X; Zhuang J
    Environ Res; 2019 Apr; 171():153-160. PubMed ID: 30665117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media.
    Micić V; Bossa N; Schmid D; Wiesner MR; Hofmann T
    Environ Sci Technol; 2020 Jan; 54(2):1250-1257. PubMed ID: 31860289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.
    Wang D; Zhang W; Hao X; Zhou D
    Environ Sci Technol; 2013 Jan; 47(2):821-8. PubMed ID: 23249307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of clay colloid - CuO nanoparticles interaction on retention of nanoparticles in different types of soils: role of clay fraction and environmental parameters.
    Tiwari E; Khandelwal N; Singh N; Biswas S; Darbha GK
    Environ Res; 2022 Jan; 203():111885. PubMed ID: 34390712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns.
    Sun P; Shijirbaatar A; Fang J; Owens G; Lin D; Zhang K
    Sci Total Environ; 2015 Feb; 505():189-98. PubMed ID: 25461021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media.
    Du M; Wang L; Ebrahimi A; Chen G; Shu S; Zhu K; Shen C; Li B; Wang G
    Ecotoxicol Environ Saf; 2021 May; 218():112291. PubMed ID: 33957420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.