These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29661305)

  • 1. Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil.
    Shang Q; Liu C; Hu Y; Jia P; Hu L; Zhou Y
    Carbohydr Polym; 2018 Jul; 191():168-175. PubMed ID: 29661305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of bio-inspired cellulose nanocrystals-soy protein isolate nanoconjugate for stabilization of oil-in-water Pickering emulsions.
    Wong SK; Supramaniam J; Wong TW; Soottitantawat A; Ruktanonchai UR; Tey BT; Tang SY
    Carbohydr Res; 2021 Jun; 504():108336. PubMed ID: 33964507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Modified Cellulose Nanocrystals and Formation of Epoxy-Nanocrystalline Cellulose (CNC) Nanocomposites.
    Abraham E; Kam D; Nevo Y; Slattegard R; Rivkin A; Lapidot S; Shoseyov O
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28086-28095. PubMed ID: 27704756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of nanocellulose with canola oil fatty acid methyl ester.
    Wei L; Agarwal UP; Hirth KC; Matuana LM; Sabo RC; Stark NM
    Carbohydr Polym; 2017 Aug; 169():108-116. PubMed ID: 28504126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-based electrospun mats composed of aligned and nonaligned fibers from cellulose nanocrystals, castor oil, and recycled PET.
    de Oliveira Santos RP; Ramos LA; Frollini E
    Int J Biol Macromol; 2020 Nov; 163():878-887. PubMed ID: 32653368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix.
    Ansari F; Salajková M; Zhou Q; Berglund LA
    Biomacromolecules; 2015 Dec; 16(12):3916-24. PubMed ID: 26505077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods.
    Wang K; Dong Y; Zhang W; Zhang S; Li J
    Polymers (Basel); 2017 Jun; 9(6):. PubMed ID: 30970897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property.
    Zhou L; He H; Li MC; Huang S; Mei C; Wu Q
    Carbohydr Polym; 2018 Jun; 189():331-341. PubMed ID: 29580417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation.
    Cao Y; Zhang X; Tao L; Li K; Xue Z; Feng L; Wei Y
    ACS Appl Mater Interfaces; 2013 May; 5(10):4438-42. PubMed ID: 23593981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic enzymatic cellulose nanocrystals via a novel, one-pot green method.
    de Carvalho Benini KCC; Marotti BS; Arantes V
    Carbohydr Res; 2023 Dec; 534():108970. PubMed ID: 37864853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Modification for the Hydrophobization of Cellulose Nanocrystals Using Radiation-Induced Grafting.
    Jeun JP; Lee Y; Kang PH; Lee DD
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6303-6308. PubMed ID: 31026952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness.
    Qin T; Liu L; Cao H; Lu B; Nie S; Cheng Z; Zhang X; Liu H; An X
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):126734. PubMed ID: 37683746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of surface modification on chemical and crystalline structure of the cellulose III nanocrystals.
    Wu Q; Xu J; Wu Z; Zhu S; Gao Y; Shi C
    Carbohydr Polym; 2020 May; 235():115962. PubMed ID: 32122497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.
    Shang B; Wang Y; Peng B; Deng Z
    J Colloid Interface Sci; 2016 Nov; 482():240-251. PubMed ID: 27505277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Controlling the Surface Structure and Properties of a Cellulose Nanocrystal Film Modified Using Alkoxysilanes in Green Solvents.
    Taniyama H; Takagi K
    Langmuir; 2022 May; 38(18):5550-5556. PubMed ID: 35438508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.
    Lizundia E; Urruchi A; Vilas JL; León LM
    Carbohydr Polym; 2016 Jan; 136():250-8. PubMed ID: 26572353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose nanocrystals as sustainable additives in water-based cutting fluids.
    Liu Z; Zhu G; Dai J; Zhu Y; Lin N
    Carbohydr Polym; 2022 Dec; 298():120139. PubMed ID: 36241305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle Structures with (Un-)Hydrogenated Castor Oil as Hydrophobic Paper Coating.
    Samyn P; Vonck L; Stanssens D; Abbeele HVD
    J Nanosci Nanotechnol; 2018 May; 18(5):3639-3653. PubMed ID: 29442878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Modification of Cellulose Nanocrystals with Succinic Anhydride.
    Leszczyńska A; Radzik P; Szefer E; Mičušík M; Omastová M; Pielichowski K
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31086019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Polydopamine Coating of Cellulose Nanocrystals on Performance of PCL/PLA Bio-Nanocomposites.
    Kelnar I; Kaprálková L; Krejčíková S; Dybal J; Vyroubalová M; Abdel-Mohsen AM
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.