BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29661533)

  • 1. Design, synthesis, and evaluation of novel N-1 fluoroquinolone derivatives: Probing for binding contact with the active site tyrosine of gyrase.
    Towle TR; Kulkarni CA; Oppegard LM; Williams BP; Picha TA; Hiasa H; Kerns RJ
    Bioorg Med Chem Lett; 2018 Jun; 28(10):1903-1910. PubMed ID: 29661533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
    Mustaev A; Malik M; Zhao X; Kurepina N; Luan G; Oppegard LM; Hiasa H; Marks KR; Kerns RJ; Berger JM; Drlica K
    J Biol Chem; 2014 May; 289(18):12300-12. PubMed ID: 24497635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bypassing fluoroquinolone resistance with quinazolinediones: studies of drug-gyrase-DNA complexes having implications for drug design.
    Drlica K; Mustaev A; Towle TR; Luan G; Kerns RJ; Berger JM
    ACS Chem Biol; 2014 Dec; 9(12):2895-904. PubMed ID: 25310082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pentapeptide repeat proteins MfpAMt and QnrB4 exhibit opposite effects on DNA gyrase catalytic reactions and on the ternary gyrase-DNA-quinolone complex.
    Mérens A; Matrat S; Aubry A; Lascols C; Jarlier V; Soussy CJ; Cavallo JD; Cambau E
    J Bacteriol; 2009 Mar; 191(5):1587-94. PubMed ID: 19060136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone.
    Lentz SRC; Chheda PR; Oppegard LM; Towle TR; Kerns RJ; Hiasa H
    Biochimie; 2019 May; 160():24-27. PubMed ID: 30763638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of binding of fluoroquinolones to the quinolone resistance-determining region of DNA gyrase: towards an understanding of the molecular basis of quinolone resistance.
    Madurga S; Sánchez-Céspedes J; Belda I; Vila J; Giralt E
    Chembiochem; 2008 Sep; 9(13):2081-6. PubMed ID: 18677735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential behaviors of Staphylococcus aureus and Escherichia coli type II DNA topoisomerases.
    Blanche F; Cameron B; Bernard FX; Maton L; Manse B; Ferrero L; Ratet N; Lecoq C; Goniot A; Bisch D; Crouzet J
    Antimicrob Agents Chemother; 1996 Dec; 40(12):2714-20. PubMed ID: 9124828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis.
    Blower TR; Williamson BH; Kerns RJ; Berger JM
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1706-13. PubMed ID: 26792525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoroquinolone-Gyrase-DNA Cleaved Complexes.
    Luan G; Drlica K
    Methods Mol Biol; 2018; 1703():269-281. PubMed ID: 29177748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening.
    Ostrov DA; Hernández Prada JA; Corsino PE; Finton KA; Le N; Rowe TC
    Antimicrob Agents Chemother; 2007 Oct; 51(10):3688-98. PubMed ID: 17682095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined QSAR/QSPR and molecular docking study on fluoroquinolones to reduce biological enrichment.
    Zhao X; Zhao Y; Ren Z; Li Y
    Comput Biol Chem; 2019 Apr; 79():177-184. PubMed ID: 30836319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies.
    Mermer A; Faiz O; Demirbas A; Demirbas N; Alagumuthu M; Arumugam S
    Bioorg Chem; 2019 Apr; 85():308-318. PubMed ID: 30654222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms.
    Xiao ZP; Wang XD; Wang PF; Zhou Y; Zhang JW; Zhang L; Zhou J; Zhou SS; Ouyang H; Lin XY; Mustapa M; Reyinbaike A; Zhu HL
    Eur J Med Chem; 2014 Jun; 80():92-100. PubMed ID: 24769347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an ethyl 5,6-dihydropyrazolo[1,5-c]quinazoline-1-carboxylate as a catalytic inhibitor of DNA gyrase.
    Aguirre AL; Chheda PR; Lentz SRC; Held HA; Groves NP; Hiasa H; Kerns RJ
    Bioorg Med Chem; 2020 May; 28(10):115439. PubMed ID: 32234278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric inhibition of the DNA-dependent ATPase activity of Escherichia coli DNA gyrase by a representative of a novel class of inhibitors.
    Shapiro AB; Andrews B
    Biochem Pharmacol; 2012 Oct; 84(7):900-4. PubMed ID: 22820247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual inhibition of Staphylococcus aureus DNA gyrase and topoisomerase IV activity by phenylalanine-derived (Z)-5-arylmethylidene rhodanines.
    Werner MM; Patel BA; Talele TT; Ashby CR; Li Z; Zauhar RJ
    Bioorg Med Chem; 2015 Sep; 23(18):6125-37. PubMed ID: 26320664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, molecular docking, and antibacterial evaluation of some novel flouroquinolone derivatives as potent antibacterial agent.
    Patel MM; Patel LJ
    ScientificWorldJournal; 2014; 2014():897187. PubMed ID: 25574496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA.
    Fernández-Sierra M; Shao Q; Fountain C; Finzi L; Dunlap D
    J Mol Biol; 2015 Jul; 427(13):2305-18. PubMed ID: 25902201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase.
    Hockings SC; Maxwell A
    J Mol Biol; 2002 Apr; 318(2):351-9. PubMed ID: 12051842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase.
    Pierrat OA; Maxwell A
    Biochemistry; 2005 Mar; 44(11):4204-15. PubMed ID: 15766248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.