BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29661681)

  • 1. A Rapamycin-Activated Caspase 9-Based Suicide Gene.
    Stavrou M; Philip B; Traynor-White C; Davis CG; Onuoha S; Cordoba S; Thomas S; Pule M
    Mol Ther; 2018 May; 26(5):1266-1276. PubMed ID: 29661681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rapamycin mediated caspase 9 homodimerization to safeguard human pluripotent stem cell therapy].
    Yang Y; Liu Y; Chen M; Li S; Lu X; He Y; Zhang K; Zou Q
    Sheng Wu Gong Cheng Xue Bao; 2023 Oct; 39(10):4098-4107. PubMed ID: 37877393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RapaCaspase-9-based suicide gene applied to the safety of IL-1RAP CAR-T cells.
    Bouquet L; Bôle-Richard E; Warda W; Neto Da Rocha M; Trad R; Nicod C; Haderbache R; Genin D; Ferrand C; Deschamps M
    Gene Ther; 2023 Sep; 30(9):706-713. PubMed ID: 37173386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation.
    Tey SK; Dotti G; Rooney CM; Heslop HE; Brenner MK
    Biol Blood Marrow Transplant; 2007 Aug; 13(8):913-24. PubMed ID: 17640595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the safety of T-Cell therapies using an inducible caspase-9 gene.
    Zhou X; Brenner MK
    Exp Hematol; 2016 Nov; 44(11):1013-1019. PubMed ID: 27473568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial suicide gene strategies for the safety of cell therapies.
    Falcon C; Smith L; Al-Obaidi M; Abu Zaanona M; Purvis K; Minagawa K; Athar M; Salzman D; Bhatia R; Goldman F; Di Stasi A
    Front Immunol; 2022; 13():975233. PubMed ID: 36189285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inducible Caspase-9 Suicide Gene to Improve the Safety of Therapy Using Human Induced Pluripotent Stem Cells.
    Yagyu S; Hoyos V; Del Bufalo F; Brenner MK
    Mol Ther; 2015 Sep; 23(9):1475-85. PubMed ID: 26022733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tet-On Inducible System for Controlling CD19-Chimeric Antigen Receptor Expression upon Drug Administration.
    Sakemura R; Terakura S; Watanabe K; Julamanee J; Takagi E; Miyao K; Koyama D; Goto T; Hanajiri R; Nishida T; Murata M; Kiyoi H
    Cancer Immunol Res; 2016 Aug; 4(8):658-68. PubMed ID: 27329987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inducible caspase 9 safety switch for T-cell therapy.
    Straathof KC; Pulè MA; Yotnda P; Dotti G; Vanin EF; Brenner MK; Heslop HE; Spencer DM; Rooney CM
    Blood; 2005 Jun; 105(11):4247-54. PubMed ID: 15728125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR.
    Veverka V; Crabbe T; Bird I; Lennie G; Muskett FW; Taylor RJ; Carr MD
    Oncogene; 2008 Jan; 27(5):585-95. PubMed ID: 17684489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen.
    Liberles SD; Diver ST; Austin DJ; Schreiber SL
    Proc Natl Acad Sci U S A; 1997 Jul; 94(15):7825-30. PubMed ID: 9223271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FRB domain of mTOR: NMR solution structure and inhibitor design.
    Leone M; Crowell KJ; Chen J; Jung D; Chiang GG; Sareth S; Abraham RT; Pellecchia M
    Biochemistry; 2006 Aug; 45(34):10294-302. PubMed ID: 16922504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution.
    Liang J; Choi J; Clardy J
    Acta Crystallogr D Biol Crystallogr; 1999 Apr; 55(Pt 4):736-44. PubMed ID: 10089303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing and characterizing a two-layered safety switch for cell therapies.
    Rossignoli F; Hoffman D; Atif E; Shah K
    Cancer Biol Ther; 2023 Dec; 24(1):2232146. PubMed ID: 37439774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caspase-9 CARD : core domain interactions require a properly formed active site.
    Huber KL; Serrano BP; Hardy JA
    Biochem J; 2018 Mar; 475(6):1177-1196. PubMed ID: 29500231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T Cells Engineered With Chimeric Antigen Receptors Targeting NKG2D Ligands Display Lethal Toxicity in Mice.
    VanSeggelen H; Hammill JA; Dvorkin-Gheva A; Tantalo DG; Kwiecien JM; Denisova GF; Rabinovich B; Wan Y; Bramson JL
    Mol Ther; 2015 Oct; 23(10):1600-10. PubMed ID: 26122933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of third generation anti-EGFRvIII chimeric T cells and EGFRvIII-expressing artificial antigen presenting cells for adoptive cell therapy for glioma.
    Sahin A; Sanchez C; Bullain S; Waterman P; Weissleder R; Carter BS
    PLoS One; 2018; 13(7):e0199414. PubMed ID: 29975720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.
    Drent E; Groen RW; Noort WA; Themeli M; Lammerts van Bueren JJ; Parren PW; Kuball J; Sebestyen Z; Yuan H; de Bruijn J; van de Donk NW; Martens AC; Lokhorst HM; Mutis T
    Haematologica; 2016 May; 101(5):616-25. PubMed ID: 26858358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene.
    Casucci M; Falcone L; Camisa B; Norelli M; Porcellini S; Stornaiuolo A; Ciceri F; Traversari C; Bordignon C; Bonini C; Bondanza A
    Front Immunol; 2018; 9():507. PubMed ID: 29619024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.