These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 29661859)

  • 21. DNA Methylation is Correlated with Pluripotency of Stem Cells.
    Wang R; Li T
    Curr Stem Cell Res Ther; 2017; 12(6):442-446. PubMed ID: 28025937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of the Mitochondria in the Evolution of Stem Cells, Including MUSE Stem Cells and Their Biology.
    Trosko JE
    Adv Exp Med Biol; 2018; 1103():131-152. PubMed ID: 30484227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron Homeostasis Determines Fate of Human Pluripotent Stem Cells Via Glycerophospholipids-Epigenetic Circuit.
    Han Z; Yu Y; Xu J; Bao Z; Xu Z; Hu J; Yu M; Bamba D; Ma W; Ding F; Zhang L; Jin M; Yan G; Huang Q; Wang X; Hua B; Yang F; Li Y; Lei L; Cao N; Pan Z; Cai B
    Stem Cells; 2019 Apr; 37(4):489-503. PubMed ID: 30599084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From gametogenesis and stem cells to cancer: common metabolic themes.
    Pereira SL; Rodrigues AS; Sousa MI; Correia M; Perestrelo T; Ramalho-Santos J
    Hum Reprod Update; 2014; 20(6):924-43. PubMed ID: 25013216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic remodeling during the loss and acquisition of pluripotency.
    Mathieu J; Ruohola-Baker H
    Development; 2017 Feb; 144(4):541-551. PubMed ID: 28196802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concise Review: Energy Metabolites: Key Mediators of the Epigenetic State of Pluripotency.
    Moussaieff A; Kogan NM; Aberdam D
    Stem Cells; 2015 Aug; 33(8):2374-80. PubMed ID: 25873344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial Heterogeneity in Stem Cells.
    Naik PP; Praharaj PP; Bhol CS; Panigrahi DP; Mahapatra KK; Patra S; Saha S; Bhutia SK
    Adv Exp Med Biol; 2019; 1123():179-194. PubMed ID: 31016601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Autophagy in the Maintenance of Stemness and Differentiation of Mesenchymal Stem Cells.
    Sbrana FV; Cortini M; Avnet S; Perut F; Columbaro M; De Milito A; Baldini N
    Stem Cell Rev Rep; 2016 Dec; 12(6):621-633. PubMed ID: 27696271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic regulation of redox status in stem cells.
    Perales-Clemente E; Folmes CD; Terzic A
    Antioxid Redox Signal; 2014 Oct; 21(11):1648-59. PubMed ID: 24949895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Live-cell imaging of subcellular structures for quantitative evaluation of pluripotent stem cells.
    Nishimura K; Ishiwata H; Sakuragi Y; Hayashi Y; Fukuda A; Hisatake K
    Sci Rep; 2019 Feb; 9(1):1777. PubMed ID: 30741960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks.
    Boward B; Wu T; Dalton S
    Stem Cells; 2016 Jun; 34(6):1427-36. PubMed ID: 26889666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the endoplasmic reticulum stress in stemness, pluripotency and development.
    Kratochvílová K; Moráň L; Paďourová S; Stejskal S; Tesařová L; Šimara P; Hampl A; Koutná I; Vaňhara P
    Eur J Cell Biol; 2016; 95(3-5):115-23. PubMed ID: 26905505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic and Mechanical Cues Regulating Pluripotent Stem Cell Fate.
    Perestrelo T; Correia M; Ramalho-Santos J; Wirtz D
    Trends Cell Biol; 2018 Dec; 28(12):1014-1029. PubMed ID: 30361056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteostatic and Metabolic Control of Stemness.
    García-Prat L; Sousa-Victor P; Muñoz-Cánoves P
    Cell Stem Cell; 2017 May; 20(5):593-608. PubMed ID: 28475885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking Telomere Regulation to Stem Cell Pluripotency.
    Liu L
    Trends Genet; 2017 Jan; 33(1):16-33. PubMed ID: 27889084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium signaling in human pluripotent stem cells.
    Apáti Á; Berecz T; Sarkadi B
    Cell Calcium; 2016 Mar; 59(2-3):117-23. PubMed ID: 26922096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pluripotent Stem Cells for Uncovering the Role of Mitochondria in Human Brain Function and Dysfunction.
    Zink A; Priller J; Prigione A
    J Mol Biol; 2018 Mar; 430(7):891-903. PubMed ID: 29458125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells.
    Rasmussen ML; Ortolano NA; Romero-Morales AI; Gama V
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29463061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondria in pluripotent stem cells: stemness regulators and disease targets.
    Folmes CD; Ma H; Mitalipov S; Terzic A
    Curr Opin Genet Dev; 2016 Jun; 38():1-7. PubMed ID: 26953561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From pluripotency to islets: miRNAs as critical regulators of human cellular differentiation.
    Hinton A; Hunter S; Reyes G; Fogel GB; King CC
    Adv Genet; 2012; 79():1-34. PubMed ID: 22989764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.