These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 29661929)
1. Arginase-1 Expression in Myeloid Cells Regulates Staphylococcus aureus Planktonic but Not Biofilm Infection. Yamada KJ; Heim CE; Aldrich AL; Gries CM; Staudacher AG; Kielian T Infect Immun; 2018 Jul; 86(7):. PubMed ID: 29661929 [No Abstract] [Full Text] [Related]
2. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. Heim CE; Vidlak D; Kielian T J Leukoc Biol; 2015 Dec; 98(6):1003-13. PubMed ID: 26232453 [TBL] [Abstract][Full Text] [Related]
3. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. Heim CE; Vidlak D; Scherr TD; Kozel JA; Holzapfel M; Muirhead DE; Kielian T J Immunol; 2014 Apr; 192(8):3778-92. PubMed ID: 24646737 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneity of Ly6G Heim CE; West SC; Ali H; Kielian T Infect Immun; 2018 Dec; 86(12):. PubMed ID: 30249747 [TBL] [Abstract][Full Text] [Related]
5. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during Staphylococcus aureus orthopedic implant infection. Heim CE; Vidlak D; Scherr TD; Hartman CW; Garvin KL; Kielian T J Immunol; 2015 Apr; 194(8):3861-3872. PubMed ID: 25762781 [TBL] [Abstract][Full Text] [Related]
6. IL-10 production by granulocytes promotes Staphylococcus aureus craniotomy infection. Kak G; Van Roy Z; Heim CE; Fallet RW; Shi W; Roers A; Duan B; Kielian T J Neuroinflammation; 2023 May; 20(1):114. PubMed ID: 37179295 [TBL] [Abstract][Full Text] [Related]
7. TLR2 and caspase-1 signaling are critical for bacterial containment but not clearance during craniotomy-associated biofilm infection. Aldrich AL; Heim CE; Shi W; Fallet RW; Duan B; Kielian T J Neuroinflammation; 2020 Apr; 17(1):114. PubMed ID: 32290861 [TBL] [Abstract][Full Text] [Related]
8. Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin. Scherr TD; Hanke ML; Huang O; James DB; Horswill AR; Bayles KW; Fey PD; Torres VJ; Kielian T mBio; 2015 Aug; 6(4):. PubMed ID: 26307164 [TBL] [Abstract][Full Text] [Related]
9. Staphylococcus aureus ATP Synthase Promotes Biofilm Persistence by Influencing Innate Immunity. Bosch ME; Bertrand BP; Heim CE; Alqarzaee AA; Chaudhari SS; Aldrich AL; Fey PD; Thomas VC; Kielian T mBio; 2020 Sep; 11(5):. PubMed ID: 32900803 [No Abstract] [Full Text] [Related]
10. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. Thurlow LR; Hanke ML; Fritz T; Angle A; Aldrich A; Williams SH; Engebretsen IL; Bayles KW; Horswill AR; Kielian T J Immunol; 2011 Jun; 186(11):6585-96. PubMed ID: 21525381 [TBL] [Abstract][Full Text] [Related]
11. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. Hanke ML; Angle A; Kielian T PLoS One; 2012; 7(8):e42476. PubMed ID: 22879997 [TBL] [Abstract][Full Text] [Related]
12. Protective role of arginase in a mouse model of colitis. Gobert AP; Cheng Y; Akhtar M; Mersey BD; Blumberg DR; Cross RK; Chaturvedi R; Drachenberg CB; Boucher JL; Hacker A; Casero RA; Wilson KT J Immunol; 2004 Aug; 173(3):2109-17. PubMed ID: 15265947 [TBL] [Abstract][Full Text] [Related]
13. Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro. Peng KT; Hsieh CC; Huang TY; Chen PC; Shih HN; Lee MS; Chang PJ PLoS One; 2017; 12(8):e0183271. PubMed ID: 28813499 [TBL] [Abstract][Full Text] [Related]
14. Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion. Leonard W; Dufait I; Schwarze JK; Law K; Engels B; Jiang H; Van den Berge D; Gevaert T; Storme G; Verovski V; Breckpot K; De Ridder M Radiother Oncol; 2016 May; 119(2):291-9. PubMed ID: 26874542 [TBL] [Abstract][Full Text] [Related]
15. CXCR2 perturbation promotes Akaraphanth M; Nordgren TM; Gries CM J Med Microbiol; 2024 Apr; 73(4):. PubMed ID: 38567642 [No Abstract] [Full Text] [Related]
16. Role of Staphylococcus aureus Formate Metabolism during Prosthetic Joint Infection. Bertrand BP; Heim CE; West SC; Chaudhari SS; Ali H; Thomas VC; Kielian T Infect Immun; 2022 Nov; 90(11):e0042822. PubMed ID: 36286525 [TBL] [Abstract][Full Text] [Related]
17. Biofilm-infected intracerebroventricular shunts elicit inflammation within the central nervous system. Snowden JN; Beaver M; Smeltzer MS; Kielian T Infect Immun; 2012 Sep; 80(9):3206-14. PubMed ID: 22753376 [TBL] [Abstract][Full Text] [Related]
18. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Heim CE; Bosch ME; Yamada KJ; Aldrich AL; Chaudhari SS; Klinkebiel D; Gries CM; Alqarzaee AA; Li Y; Thomas VC; Seto E; Karpf AR; Kielian T Nat Microbiol; 2020 Oct; 5(10):1271-1284. PubMed ID: 32661313 [TBL] [Abstract][Full Text] [Related]
19. TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. Yang F; Li Y; Wu T; Na N; Zhao Y; Li W; Han C; Zhang L; Lu J; Zhao Y J Mol Med (Berl); 2016 Aug; 94(8):911-20. PubMed ID: 26936474 [TBL] [Abstract][Full Text] [Related]
20. A mouse ear skin model to study the dynamics of innate immune responses against Staphylococcus aureus biofilms. Abdul Hamid AI; Nakusi L; Givskov M; Chang YT; Marquès C; Gueirard P BMC Microbiol; 2020 Jan; 20(1):22. PubMed ID: 31996131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]