BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29661935)

  • 1. The labile iron pool attenuates peroxynitrite-dependent damage and can no longer be considered solely a pro-oxidative cellular iron source.
    Damasceno FC; Condeles AL; Lopes AKB; Facci RR; Linares E; Truzzi DR; Augusto O; Toledo JC
    J Biol Chem; 2018 Jun; 293(22):8530-8542. PubMed ID: 29661935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Labile Iron Pool Reacts Rapidly and Catalytically with Peroxynitrite.
    Condeles AL; Toledo Junior JC
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxynitrite, a stealthy biological oxidant.
    Radi R
    J Biol Chem; 2013 Sep; 288(37):26464-72. PubMed ID: 23861390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cells in the metabolism of nitric oxide-derived peroxynitrite.
    Romero N; Denicola A; Radi R
    IUBMB Life; 2006 Oct; 58(10):572-80. PubMed ID: 17050374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.
    Dahm CC; Moore K; Murphy MP
    J Biol Chem; 2006 Apr; 281(15):10056-65. PubMed ID: 16481325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide diffusion to red blood cells limits extracellular, but not intraphagosomal, peroxynitrite formation by macrophages.
    Prolo C; Álvarez MN; Ríos N; Peluffo G; Radi R; Romero N
    Free Radic Biol Med; 2015 Oct; 87():346-55. PubMed ID: 26119787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.
    Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S
    Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species.
    Castro L; Tórtora V; Mansilla S; Radi R
    Acc Chem Res; 2019 Sep; 52(9):2609-2619. PubMed ID: 31287291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of redox signaling and poly (adenosine diphosphate-ribose) polymerase activation in vascular smooth muscle cell growth inhibition by nitric oxide and peroxynitrite.
    Huang J; Lin SC; Nadershahi A; Watts SW; Sarkar R
    J Vasc Surg; 2008 Mar; 47(3):599-607. PubMed ID: 18295111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe.
    Damasceno FC; Facci RR; da Silva TM; Toledo JC
    Free Radic Biol Med; 2014 Dec; 77():270-80. PubMed ID: 25242205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bell-shaped curve for peroxynitrite-mediated oxidation and nitration of NO/O2-* is alive and well.
    Jourd'heuil D; Lancaster JR; Fukuto J; Roberts DD; Miranda KM; Mayer B; Grisham MB; Wink DA
    J Biol Chem; 2010 Aug; 285(35):le15. PubMed ID: 20729216
    [No Abstract]   [Full Text] [Related]  

  • 12. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications.
    Calcerrada P; Peluffo G; Radi R
    Curr Pharm Des; 2011 Dec; 17(35):3905-32. PubMed ID: 21933142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and quantification of nitric oxide-derived oxidants in biological systems.
    Möller MN; Rios N; Trujillo M; Radi R; Denicola A; Alvarez B
    J Biol Chem; 2019 Oct; 294(40):14776-14802. PubMed ID: 31409645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite.
    Quijano C; Castro L; Peluffo G; Valez V; Radi R
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3404-14. PubMed ID: 17906108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide.
    Pryor WA; Squadrito GL
    Am J Physiol; 1995 May; 268(5 Pt 1):L699-722. PubMed ID: 7762673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide, nitric oxide and peroxynitrite production by macrophages under different physiological oxygen tensions.
    Casella AC; Prolo C; Pereyra J; Ríos N; Piacenza L; Radi R; Álvarez MN
    Free Radic Biol Med; 2024 Feb; 212():330-335. PubMed ID: 38141888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine.
    Radi R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5839-5848. PubMed ID: 29802228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms of peroxynitrite-induced neuronal death.
    Ramdial K; Franco MC; Estevez AG
    Brain Res Bull; 2017 Jul; 133():4-11. PubMed ID: 28655600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.
    Hu TM; Chiu SJ; Hsu YM
    Biochem Biophys Res Commun; 2014 Aug; 451(2):196-201. PubMed ID: 25078618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxynitrite reactivity with amino acids and proteins.
    Alvarez B; Radi R
    Amino Acids; 2003 Dec; 25(3-4):295-311. PubMed ID: 14661092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.