These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
550 related articles for article (PubMed ID: 29662026)
21. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. Liu CC; Zheng XJ; Ye XS ChemMedChem; 2016 Feb; 11(4):357-62. PubMed ID: 26762799 [TBL] [Abstract][Full Text] [Related]
22. HIV. The modern era of HIV-1 vaccine development. Mascola JR Science; 2015 Jul; 349(6244):139-40. PubMed ID: 26160931 [No Abstract] [Full Text] [Related]
23. HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. de Taeye SW; Moore JP; Sanders RW Trends Immunol; 2016 Mar; 37(3):221-232. PubMed ID: 26869204 [TBL] [Abstract][Full Text] [Related]
24. HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Kwong PD; Mascola JR Immunity; 2018 May; 48(5):855-871. PubMed ID: 29768174 [TBL] [Abstract][Full Text] [Related]
25. DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers. Gupta S; Clark ES; Termini JM; Boucher J; Kanagavelu S; LeBranche CC; Abraham S; Montefiori DC; Khan WN; Stone GW J Virol; 2015 Apr; 89(8):4158-69. PubMed ID: 25631080 [TBL] [Abstract][Full Text] [Related]
26. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. Liang Y; Guttman M; Williams JA; Verkerke H; Alvarado D; Hu SL; Lee KK J Virol; 2016 Oct; 90(20):9224-36. PubMed ID: 27489265 [TBL] [Abstract][Full Text] [Related]
28. Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Walker LM; Burton DR Curr Opin Immunol; 2010 Jun; 22(3):358-66. PubMed ID: 20299194 [TBL] [Abstract][Full Text] [Related]
29. Structure-guided envelope trimer design in HIV-1 vaccine development: a narrative review. Derking R; Sanders RW J Int AIDS Soc; 2021 Nov; 24 Suppl 7(Suppl 7):e25797. PubMed ID: 34806305 [TBL] [Abstract][Full Text] [Related]
30. Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1. Walimbwa SI; Maly P; Kafkova LR; Raska M J Biomed Sci; 2024 Aug; 31(1):83. PubMed ID: 39169357 [TBL] [Abstract][Full Text] [Related]
31. Toward an antibody-based HIV-1 vaccine. Hoxie JA Annu Rev Med; 2010; 61():135-52. PubMed ID: 19824826 [TBL] [Abstract][Full Text] [Related]
32. Stabilized HIV-1 envelope glycoprotein trimers for vaccine use. Medina-Ramírez M; Sanders RW; Sattentau QJ Curr Opin HIV AIDS; 2017 May; 12(3):241-249. PubMed ID: 28422788 [TBL] [Abstract][Full Text] [Related]
33. A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Ferrantelli F; Maggiorella MT; Schiavoni I; Sernicola L; Olivieri E; Farcomeni S; Pavone-Cossut MR; Moretti S; Belli R; Collacchi B; Srivastava IK; Titti F; Cafaro A; Barnett SW; Ensoli B Vaccine; 2011 Apr; 29(16):2918-32. PubMed ID: 21338681 [TBL] [Abstract][Full Text] [Related]
34. Broadly Neutralizing Antibodies Against HIV: New Insights to Inform Vaccine Design. Sadanand S; Suscovich TJ; Alter G Annu Rev Med; 2016; 67():185-200. PubMed ID: 26565674 [TBL] [Abstract][Full Text] [Related]
35. Neutralizing antibodies and control of HIV: moves and countermoves. Hessell AJ; Haigwood NL Curr HIV/AIDS Rep; 2012 Mar; 9(1):64-72. PubMed ID: 22203469 [TBL] [Abstract][Full Text] [Related]
36. Putative rhesus macaque germline predecessors of human broadly HIV-neutralizing antibodies: differences from the human counterparts and implications for HIV-1 vaccine development. Yuan T; Li J; Zhang Y; Wang Y; Streaker E; Dimitrov DS; Zhang MY Vaccine; 2011 Sep; 29(40):6903-10. PubMed ID: 21807049 [TBL] [Abstract][Full Text] [Related]
37. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. Zhang Z; Li S; Gu Y; Xia N Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27869733 [TBL] [Abstract][Full Text] [Related]
38. Structural Insights from HIV-Antibody Coevolution and Related Immunization Studies. Zhou JO; Ton T; Morriss JW; Nguyen D; Fera D AIDS Res Hum Retroviruses; 2018 Sep; 34(9):760-768. PubMed ID: 29984587 [TBL] [Abstract][Full Text] [Related]
39. Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. Gift SK; Leaman DP; Zhang L; Kim AS; Zwick MB J Virol; 2017 Dec; 91(24):. PubMed ID: 28978711 [TBL] [Abstract][Full Text] [Related]
40. Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. Go EP; Ding H; Zhang S; Ringe RP; Nicely N; Hua D; Steinbock RT; Golabek M; Alin J; Alam SM; Cupo A; Haynes BF; Kappes JC; Moore JP; Sodroski JG; Desaire H J Virol; 2017 May; 91(9):. PubMed ID: 28202756 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]