These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29662047)

  • 1. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB₂/7050Al MMC.
    Xiong Y; Wang W; Jiang R; Lin K; Shao M
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29662047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo⁻Mechanical Behavior and Constitutive Modeling of In Situ TiB
    Lin K; Wang W; Jiang R; Xiong Y; Shan C
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718.
    Wang B; Liu Z; Hou X; Zhao J
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29561770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Machining Process of SiCp/Al Particle Reinforced Metal Matrix Composite Using Finite Element Analysis and Experimental Verification.
    Laghari RA; Li J; Wu Y
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessments of Process Parameters on Cutting Force and Surface Roughness during Drilling of AA7075/TiB2 In Situ Composite.
    Parasuraman S; Elamvazuthi I; Kanagaraj G; Natarajan E; Pugazhenthi A
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Joint Johnson-Cook-TANH Constitutive Law for Modeling Saw-Tooth Chip Formation of Ti-6AL-4V Based on an Improved Smoothed Particle Hydrodynamics Method.
    Niu W; Wang Y; Li X; Guo R
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of segmental chips in metal cutting modeled with the PFEM.
    Rodriguez Prieto JM; Carbonell JM; Cante JC; Oliver J; Jonsén P
    Comput Mech; 2018; 61(6):639-655. PubMed ID: 31007328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Cutting Force and Chip Formation from the True Stress-Strain Relation Using an Explicit FEM for Polymer Machining.
    Yang B; Wang H; Fu K; Wang C
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive Model and Cutting Simulation of Titanium Alloy Ti6Al4V after Heat Treatment.
    Qian X; Duan X
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V.
    Rodríguez JM; Larsson S; Carbonell JM; Jonsén P
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity Analysis of Johnson-Cook Material Constants and Friction Coefficient Influence on Finite Element Simulation of Turning Inconel 718.
    Qiu X; Cheng X; Dong P; Peng H; Xing Y; Zhou X
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31557806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subroutine Embedding and Finite Element Simulation of the Improved Constitutive Equation for Ti6Al4V during High-Speed Machining.
    Liu L; Wu W; Zhao Y; Cheng Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Identification of Constitutive Model for GH4198 Based on Genetic-Particle Swarm Algorithm.
    Jin Q; Li J; Li F; Fu R; Yu H; Guo L
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting Depth Dictates the Transition from Continuous to Segmented Chip Formation.
    Aghababaei R; Malekan M; Budzik M
    Phys Rev Lett; 2021 Dec; 127(23):235502. PubMed ID: 34936770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Modeling and Analysis of Ti6Al4V Alloy Chip for Biomedical Applications.
    Saleem W; Salah B; Velay X; Ahmad R; Khan R; Pruncu CI
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the fracture energy on the finite element simulation in Ti6Al4V alloy machining.
    Bermudo Gamboa C; Andersson T; Svensson D; Trujillo Vilches FJ; Martín-Béjar S; Sevilla Hurtado L
    Sci Rep; 2021 Sep; 11(1):18490. PubMed ID: 34531521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation of chip formation mechanism in elliptical vibration assisted cutting of nickel-based superalloy Inconel 718.
    Tong G; Yang L; Ji B; Wu H; Zou F
    Sci Prog; 2024; 107(1):368504241238081. PubMed ID: 38500341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serrated Chips Formation in Micro Orthogonal Cutting of Ti6Al4V Alloys with Equiaxial and Martensitic Microstructures.
    Zhao Z; To S; Zhuang Z
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30897698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved stress corrosion cracking resistance of in-situ TiB
    Liu G; Geng J; Li Y; Li H; Wang M; Chen D; Ma N; Wang H
    Micron; 2021 Jun; 145():103056. PubMed ID: 33740567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient Temperature at Tool-Chip Interface during Initial Period of Chip Formation in Orthogonal Cutting of Inconel 718.
    Alammari Y; Weng J; Saelzer J; Biermann D
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.