These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 29662062)
21. A backtrack-inducing sequence is an essential component of Escherichia coli σ(70)-dependent promoter-proximal pausing. Perdue SA; Roberts JW Mol Microbiol; 2010 Nov; 78(3):636-50. PubMed ID: 21382107 [TBL] [Abstract][Full Text] [Related]
22. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. Kyzer S; Ha KS; Landick R; Palangat M J Biol Chem; 2007 Jun; 282(26):19020-8. PubMed ID: 17502377 [TBL] [Abstract][Full Text] [Related]
23. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Davenport RJ; Wuite GJ; Landick R; Bustamante C Science; 2000 Mar; 287(5462):2497-500. PubMed ID: 10741971 [TBL] [Abstract][Full Text] [Related]
24. Nascent RNA sequencing identifies a widespread sigma70-dependent pausing regulated by Gre factors in bacteria. Sun Z; Yakhnin AV; FitzGerald PC; Mclntosh CE; Kashlev M Nat Commun; 2021 Feb; 12(1):906. PubMed ID: 33568644 [TBL] [Abstract][Full Text] [Related]
25. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. Kolb KE; Hein PP; Landick R J Biol Chem; 2014 Jan; 289(2):1151-63. PubMed ID: 24275665 [TBL] [Abstract][Full Text] [Related]
26. Control of Transcription Initiation by Biased Thermal Fluctuations on Repetitive Genomic Sequences. Imashimizu M; Tokunaga Y; Afek A; Takahashi H; Shimamoto N; Lukatsky DB Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32916947 [TBL] [Abstract][Full Text] [Related]
27. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. Brodolin K; Morichaud Z J Biol Chem; 2021; 296():100253. PubMed ID: 33380428 [TBL] [Abstract][Full Text] [Related]
28. Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Tang GQ; Roy R; Ha T; Patel SS Mol Cell; 2008 Jun; 30(5):567-77. PubMed ID: 18538655 [TBL] [Abstract][Full Text] [Related]
29. Antitermination protein P7 of bacteriophage Xp10 distinguishes different types of transcriptional pausing by bacterial RNA polymerase. Prostova M; Kulbachinskiy A; Esyunina D Biochimie; 2020 Mar; 170():57-64. PubMed ID: 31883957 [TBL] [Abstract][Full Text] [Related]
30. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation. Hatoum A; Roberts J Mol Microbiol; 2008 Apr; 68(1):17-28. PubMed ID: 18333883 [TBL] [Abstract][Full Text] [Related]
31. Different types of pausing modes during transcription initiation. Lerner E; Ingargiola A; Lee JJ; Borukhov S; Michalet X; Weiss S Transcription; 2017 Aug; 8(4):242-253. PubMed ID: 28332923 [TBL] [Abstract][Full Text] [Related]
32. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. Barker MM; Gaal T; Gourse RL J Mol Biol; 2001 Jan; 305(4):689-702. PubMed ID: 11162085 [TBL] [Abstract][Full Text] [Related]
33. Temperature effects on RNA polymerase initiation kinetics reveal which open complex initiates and that bubble collapse is stepwise. Plaskon DM; Henderson KL; Felth LC; Molzahn CM; Evensen C; Dyke S; Shkel IA; Record MT Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34290140 [TBL] [Abstract][Full Text] [Related]
34. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution. Koh HR; Roy R; Sorokina M; Tang GQ; Nandakumar D; Patel SS; Ha T Mol Cell; 2018 May; 70(4):695-706.e5. PubMed ID: 29775583 [TBL] [Abstract][Full Text] [Related]
35. DNA sequences in gal operon override transcription elongation blocks. Lewis DE; Komissarova N; Le P; Kashlev M; Adhya S J Mol Biol; 2008 Oct; 382(4):843-58. PubMed ID: 18691599 [TBL] [Abstract][Full Text] [Related]
37. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes. Vo NV; Hsu LM; Kane CM; Chamberlin MJ Biochemistry; 2003 Apr; 42(13):3787-97. PubMed ID: 12667070 [TBL] [Abstract][Full Text] [Related]
38. Role of Interactions of the CRE Region of Escherichia coli RNA Polymerase with Nontemplate DNA during Promoter Escape. Petushkov IV; Kulbachinskiy AV Biochemistry (Mosc); 2020 Jul; 85(7):792-800. PubMed ID: 33040723 [TBL] [Abstract][Full Text] [Related]
39. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Wassarman KM; Saecker RM Science; 2006 Dec; 314(5805):1601-3. PubMed ID: 17158328 [TBL] [Abstract][Full Text] [Related]
40. In Vitro Transcription Assay to Quantify Effects of H-NS Filaments on RNA Chain Elongation by RNA Polymerase. Boudreau BA; Hustmyer CM; Kotlajich MV; Landick R Methods Mol Biol; 2024; 2819():381-419. PubMed ID: 39028516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]