These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 29662157)

  • 1. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.
    Pandya S; Wilbur J; Kim J; Gao R; Dasgupta A; Dames C; Martin LW
    Nat Mater; 2018 May; 17(5):432-438. PubMed ID: 29662157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead-free relaxor-ferroelectric thin films for energy harvesting from low-grade waste-heat.
    Sharma AP; Behera MK; Pradhan DK; Pradhan SK; Bonner CE; Bahoura M
    Sci Rep; 2021 Jan; 11(1):111. PubMed ID: 33420242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyroelectric energy conversion: optimization principles.
    Sebald G; Lefeuvre E; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):538-51. PubMed ID: 18407845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large pyroelectric energy conversion in lead scandium tantalate thin films.
    Aravindhan A; Glinsek S; Girod S; Blazquez Martinez A; Granzow T; Kovacova V; Defay E
    Heliyon; 2024 May; 10(9):e30430. PubMed ID: 38726117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Intrinsic, Extrinsic, Dielectric, and Secondary Pyroelectric Responses in PbZr
    Velarde G; Pandya S; Zhang L; Garcia D; Lupi E; Gao R; Wilbur JD; Dames C; Martin LW
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35146-35154. PubMed ID: 31483605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.
    Park T; Na J; Kim B; Kim Y; Shin H; Kim E
    ACS Nano; 2015 Dec; 9(12):11830-9. PubMed ID: 26308669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Giant Dielectric, and Pyroelectric Response of [001]-Oriented Pr
    Cai C; Zhang D; Liu W; Wang J; Zhou S; Su Y; Sun X; Lin D
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved pyroelectric figures of merit in compositionally graded PbZr1-xTixO3 thin films.
    Mangalam RV; Agar JC; Damodaran AR; Karthik J; Martin LW
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13235-41. PubMed ID: 24299171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyroelectric catalytic performance of Sm
    Lin X; Ding J; Li X; Tang Z; Chen H; Dong H; Wu A; Jiang L
    Dalton Trans; 2023 Oct; 52(41):14917-14927. PubMed ID: 37796033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear pyroelectric energy harvesting from relaxor single crystals.
    Khodayari A; Pruvost S; Sebald G; Guyomar D; Mohammadi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):693-9. PubMed ID: 19406698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based autonomous pyroelectric system for near-field energy conversion.
    Latella I; Ben-Abdallah P
    Sci Rep; 2021 Sep; 11(1):19489. PubMed ID: 34593860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improper molecular ferroelectrics with simultaneous ultrahigh pyroelectricity and figures of merit.
    Li W; Tang G; Zhang G; Jafri HM; Zhou J; Liu D; Liu Y; Wang J; Jin K; Hu Y; Gu H; Wang Z; Hong J; Huang H; Chen LQ; Jiang S; Wang Q
    Sci Adv; 2021 Jan; 7(5):. PubMed ID: 33514555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior.
    Peddigari M; Palneedi H; Hwang GT; Lim KW; Kim GY; Jeong DY; Ryu J
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20720-20727. PubMed ID: 29856200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large harvested energy with non-linear pyroelectric modules.
    Lheritier P; Torelló A; Usui T; Nouchokgwe Y; Aravindhan A; Li J; Prah U; Kovacova V; Bouton O; Hirose S; Defay E
    Nature; 2022 Sep; 609(7928):718-721. PubMed ID: 36097191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyroelectric nanogenerators for harvesting thermoelectric energy.
    Yang Y; Guo W; Pradel KC; Zhu G; Zhou Y; Zhang Y; Hu Y; Lin L; Wang ZL
    Nano Lett; 2012 Jun; 12(6):2833-8. PubMed ID: 22545631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyroelectric effect mediated infrared photoresponse in Bi
    Zheng R; Yan MY; Li C; Yin SQ; Chen WD; Gao GY; Yan JM; Chai Y
    Nanoscale; 2021 Dec; 13(48):20657-20662. PubMed ID: 34878474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy harvesting based on FE-FE transition in ferroelectric single crystals.
    Guyomar D; Pruvost S; Sebald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):279-85. PubMed ID: 18334334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyroelectric Energy Conversion and Its Applications-Flexible Energy Harvesters and Sensors.
    Thakre A; Kumar A; Song HC; Jeong DY; Ryu J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields.
    Kumara Sodige BA; Furuno H; Trung Ngo NC; Sugiyama H; Baba M; Niihara K; Nakayama T
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37466409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.