BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29662162)

  • 1. A switch point in the molecular chaperone Hsp90 responding to client interaction.
    Rutz DA; Luo Q; Freiburger L; Madl T; Kaila VRI; Sattler M; Buchner J
    Nat Commun; 2018 Apr; 9(1):1472. PubMed ID: 29662162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle.
    Biebl MM; Lopez A; Rehn A; Freiburger L; Lawatscheck J; Blank B; Sattler M; Buchner J
    Nat Commun; 2021 Feb; 12(1):828. PubMed ID: 33547294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation.
    Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P
    Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock protein 90 enhances the electron transfer between the FMN and heme cofactors in neuronal nitric oxide synthase.
    Zheng H; Li J; Feng C
    FEBS Lett; 2020 Sep; 594(17):2904-2913. PubMed ID: 32573772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy.
    Jahn M; Tych K; Girstmair H; Steinmaßl M; Hugel T; Buchner J; Rief M
    Structure; 2018 Jan; 26(1):96-105.e4. PubMed ID: 29276035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the Hsp90 chaperone cycle by a stringent client protein.
    Lorenz OR; Freiburger L; Rutz DA; Krause M; Zierer BK; Alvira S; Cuéllar J; Valpuesta JM; Madl T; Sattler M; Buchner J
    Mol Cell; 2014 Mar; 53(6):941-53. PubMed ID: 24613341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex.
    Martino F; Pal M; Muñoz-Hernández H; Rodríguez CF; Núñez-Ramírez R; Gil-Carton D; Degliesposti G; Skehel JM; Roe SM; Prodromou C; Pearl LH; Llorca O
    Nat Commun; 2018 Apr; 9(1):1501. PubMed ID: 29662061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hsp90 is regulated by a switch point in the C-terminal domain.
    Retzlaff M; Stahl M; Eberl HC; Lagleder S; Beck J; Kessler H; Buchner J
    EMBO Rep; 2009 Oct; 10(10):1147-53. PubMed ID: 19696785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A primate specific extra domain in the molecular chaperone Hsp90.
    Tripathi V; Obermann WM
    PLoS One; 2013; 8(8):e71856. PubMed ID: 23951259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methylated lysine is a switch point for conformational communication in the chaperone Hsp90.
    Rehn A; Lawatscheck J; Jokisch ML; Mader SL; Luo Q; Tippel F; Blank B; Richter K; Lang K; Kaila VRI; Buchner J
    Nat Commun; 2020 Mar; 11(1):1219. PubMed ID: 32139682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdomain communication suppressing high intrinsic ATPase activity of Sse1 is essential for its co-disaggregase activity with Ssa1.
    Kumar V; Peter JJ; Sagar A; Ray A; Jha MP; Rebeaud ME; Tiwari S; Goloubinoff P; Ashish F; Mapa K
    FEBS J; 2020 Feb; 287(4):671-694. PubMed ID: 31423733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening.
    Muir KW; Li Y; Weis F; Panne D
    Nat Struct Mol Biol; 2020 Mar; 27(3):233-239. PubMed ID: 32066964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of cycle timing for the function of the molecular chaperone Hsp90.
    Zierer BK; Rübbelke M; Tippel F; Madl T; Schopf FH; Rutz DA; Richter K; Sattler M; Buchner J
    Nat Struct Mol Biol; 2016 Nov; 23(11):1020-1028. PubMed ID: 27723736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Charged Linker Modulates the Conformations and Molecular Interactions of Hsp90.
    López A; Elimelech AR; Klimm K; Sattler M
    Chembiochem; 2021 Mar; 22(6):1084-1092. PubMed ID: 33147371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of C-terminal structure of MinC and its implication in evolution of bacterial cell division.
    Yang S; Shen Q; Wang S; Song C; Lei Z; Han S; Zhang X; Zheng J; Jia Z
    Sci Rep; 2017 Aug; 7(1):7627. PubMed ID: 28790446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
    Siligardi G; Hu B; Panaretou B; Piper PW; Pearl LH; Prodromou C
    J Biol Chem; 2004 Dec; 279(50):51989-98. PubMed ID: 15466438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90.
    Wegele H; Muschler P; Bunck M; Reinstein J; Buchner J
    J Biol Chem; 2003 Oct; 278(41):39303-10. PubMed ID: 12890674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.