These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29662249)

  • 41. Spatial differences influence nitrogen uptake, grain yield, and land-use advantage of wheat/soybean relay intercropping systems.
    Raza MA; Din AMU; Zhiqi W; Gul H; Ur Rehman S; Bukhari B; Haider I; Rahman MHU; Liang X; Luo S; El Sabagh A; Qin R; Zhongming M
    Sci Rep; 2023 Oct; 13(1):16916. PubMed ID: 37805552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving productivity and soil fertility in Medicago sativa and Hordeum marinum through intercropping under saline conditions.
    Guerchi A; Mnafgui W; Jabri C; Merghni M; Sifaoui K; Mahjoub A; Ludidi N; Badri M
    BMC Plant Biol; 2024 Mar; 24(1):158. PubMed ID: 38429693
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Invited review: Sustainable forage and grain crop production for the US dairy industry.
    Martin NP; Russelle MP; Powell JM; Sniffen CJ; Smith SI; Tricarico JM; Grant RJ
    J Dairy Sci; 2017 Dec; 100(12):9479-9494. PubMed ID: 28987574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing the land use efficiency of low-land rice (Oryza sativa L.)-Grass pea (Lathyrus sativus L.) additive series relay intercropping in North-Western Ethiopia: A farmer's indigenous knowledge.
    Assefa E; Bitew Y
    PLoS One; 2023; 18(7):e0281410. PubMed ID: 37410778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of alternative irrigation and cropping systems in forage production may alleviate the water scarcity in semi-arid regions.
    Baghdadi A; Golzardi F; Hashemi M
    J Sci Food Agric; 2023 Aug; 103(10):5050-5060. PubMed ID: 36973867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers.
    Peixoto L; Olesen JE; Elsgaard L; Enggrob KL; Banfield CC; Dippold MA; Nicolaisen MH; Bak F; Zang H; Dresbøll DB; Thorup-Kristensen K; Rasmussen J
    Sci Rep; 2022 Apr; 12(1):5952. PubMed ID: 35396458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward plant breeding for multicrop systems.
    Moore VM; Peters T; Schlautman B; Brummer EC
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2205792119. PubMed ID: 36972435
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Animal performance and environmental efficiency of cool- and warm-season annual grazing systems.
    Leanne Dillard S; Hancock DW; Harmon DD; Kimberly Mullenix M; Beck PA; Soder KJ
    J Anim Sci; 2018 Jul; 96(8):3491-3502. PubMed ID: 29566219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: A meta-analysis.
    Peterson CA; Deiss L; Gaudin ACM
    PLoS One; 2020; 15(5):e0231840. PubMed ID: 32379773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.
    Tani E; Abraham E; Chachalis D; Travlos I
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28587254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Forage use to improve environmental sustainability of ruminant production.
    Guyader J; Janzen HH; Kroebel R; Beauchemin KA
    J Anim Sci; 2016 Aug; 94(8):3147-3158. PubMed ID: 27695772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessing trade-offs among productive, economic, and environmental indicators of forage systems in southern Tibetan crop-livestock integration.
    Duan C; Yu C; Shi P; Huangqing D; Zhang X; Dai E
    Sci Total Environ; 2023 Jun; 876():162641. PubMed ID: 36921851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic architecture and QTL selection response for Kernza perennial grain domestication traits.
    Crain J; Larson S; Dorn K; DeHaan L; Poland J
    Theor Appl Genet; 2022 Aug; 135(8):2769-2784. PubMed ID: 35763029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On-farm participatory evaluation and selection of legumes intercropped with finger millet (
    Derebe B; Worku A; Chanie Y; Wolie A
    Heliyon; 2021 Nov; 7(11):e08319. PubMed ID: 34820537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing Crop Domestication Through Genomic Selection, a Case Study of Intermediate Wheatgrass.
    Crain J; Bajgain P; Anderson J; Zhang X; DeHaan L; Poland J
    Front Plant Sci; 2020; 11():319. PubMed ID: 32265968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Origin of current intermediate wheatgrass germplasm being developed for Kernza grain production.
    Wagoner P; Crain J; Larson S; DeHaan L
    Res Sq; 2023 Oct; ():. PubMed ID: 37886550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review.
    Xue Y; Xia H; Christie P; Zhang Z; Li L; Tang C
    Ann Bot; 2016 Mar; 117(3):363-77. PubMed ID: 26749590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Legume Intercropping With the Bioenergy Crop
    Nabel M; Schrey SD; Temperton VM; Harrison L; Jablonowski ND
    Front Plant Sci; 2018; 9():905. PubMed ID: 30013587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.
    Meehan TD; Gratton C; Diehl E; Hunt ND; Mooney DF; Ventura SJ; Barham BL; Jackson RD
    PLoS One; 2013; 8(11):e80093. PubMed ID: 24223215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Benefits and Risks of Intercropping for Crop Resilience and Pest Management.
    Huss CP; Holmes KD; Blubaugh CK
    J Econ Entomol; 2022 Oct; 115(5):1350-1362. PubMed ID: 35452091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.