BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29662774)

  • 1. A novel gait-based synthesis procedure for the design of 4-bar exoskeleton with natural trajectories.
    Singh R; Chaudhary H; Singh AK
    J Orthop Translat; 2018 Jan; 12():6-15. PubMed ID: 29662774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait.
    Singh R; Chaudhary H; Singh AK
    Disabil Rehabil Assist Technol; 2019 Jul; 14(5):462-470. PubMed ID: 30044676
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanically Assisted Neurorehabilitation: A Novel Six-Bar Linkage Mechanism for Gait Rehabilitation.
    Li M; Yan J; Zhao H; Ma G; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():985-992. PubMed ID: 34010135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton.
    Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R
    Front Robot AI; 2019; 6():36. PubMed ID: 33501052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Balance Gait for Walking Assistance Exoskeleton.
    Chen Q; Cheng H; Yue C; Huang R; Guo H
    Appl Bionics Biomech; 2018; 2018():7847014. PubMed ID: 30065785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint.
    Jiang J; Chen P; Peng J; Qiao X; Zhu F; Zhong J
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37092408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review in gait rehabilitation devices and applied control techniques.
    Chaparro-Cárdenas SL; Lozano-Guzmán AA; Ramirez-Bautista JA; Hernández-Zavala A
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):819-834. PubMed ID: 29577779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 11. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton.
    Long Y; Du Z; Cong L; Wang W; Zhang Z; Dong W
    ISA Trans; 2017 Mar; 67():389-397. PubMed ID: 28108003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A task-based design methodology for robotic exoskeletons.
    Heidari O; Wolbrecht ET; Perez-Gracia A; Yihun YS
    J Rehabil Assist Technol Eng; 2018; 5():2055668318800672. PubMed ID: 31191955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR; Mortenson WB; Durocher M; Teasell R; Yao J; Eng JJ
    BMC Neurol; 2020 Jan; 20(1):35. PubMed ID: 31992219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
    Tamburella F; Tagliamonte NL; Masciullo M; Pisotta I; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):147-164. Technology in Medicine. PubMed ID: 33386045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait-Oriented Post-Stroke Rehabilitation Tasks Online Trajectory Generation for 1-DOF Hip Lower-Limb Exoskeleton.
    Courtois G; Dequidt A; Chevrie J; Bonnet X; Pudlo P
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.