These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29662891)

  • 41. Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss.
    Vlajkovic SM; Ambepitiya K; Barclay M; Boison D; Housley GD; Thorne PR
    Hear Res; 2017 Mar; 345():43-51. PubMed ID: 28034618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relation between outer hair cell loss and hearing loss in rats exposed to styrene.
    Chen GD; Tanaka C; Henderson D
    Hear Res; 2008 Sep; 243(1-2):28-34. PubMed ID: 18586423
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tumor necrosis factor-alpha-mutant mice exhibit high frequency hearing loss.
    Oishi N; Chen J; Zheng HW; Hill K; Schacht J; Sha SH
    J Assoc Res Otolaryngol; 2013 Dec; 14(6):801-11. PubMed ID: 23996384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Audiological evaluation of affected members from a Dutch DFNA8/12 (TECTA) family.
    Plantinga RF; Cremers CW; Huygen PL; Kunst HP; Bosman AJ
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):1-7. PubMed ID: 17136632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells.
    Jeng JY; Johnson SL; Carlton AJ; De Tomasi L; Goodyear RJ; De Faveri F; Furness DN; Wells S; Brown SDM; Holley MC; Richardson GP; Mustapha M; Bowl MR; Marcotti W
    J Physiol; 2020 Sep; 598(18):3891-3910. PubMed ID: 32608086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches.
    Sayles M; Walls MK; Heinz MG
    Adv Exp Med Biol; 2016; 894():285-295. PubMed ID: 27080669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.
    Drexl M; Otto L; Wiegrebe L; Marquardt T; Gürkov R; Krause E
    Hear Res; 2016 Feb; 332():87-94. PubMed ID: 26706707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cochlear compression: perceptual measures and implications for normal and impaired hearing.
    Oxenham AJ; Bacon SP
    Ear Hear; 2003 Oct; 24(5):352-66. PubMed ID: 14534407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Connexin 43 and hearing: possible implications for retrocochlear auditory processing.
    Kim AH; Nahm E; Sollas A; Mattiace L; Rozental R
    Laryngoscope; 2013 Dec; 123(12):3185-93. PubMed ID: 23817980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of PGE-type receptor 4 in auditory function and noise-induced hearing loss in mice.
    Hamaguchi K; Yamamoto N; Nakagawa T; Furuyashiki T; Narumiya S; Ito J
    Neuropharmacology; 2012 Mar; 62(4):1841-7. PubMed ID: 22198478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in otoacoustic emissions and auditory brain stem response after cis-platinum exposure in gerbils.
    Sie KC; Norton SJ
    Otolaryngol Head Neck Surg; 1997 Jun; 116(6 Pt 1):585-92. PubMed ID: 9215367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice.
    Chumak T; Bohuslavova R; Macova I; Dodd N; Buckiova D; Fritzsch B; Syka J; Pavlinkova G
    Mol Neurobiol; 2016 May; 53(4):2368-83. PubMed ID: 25990412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Correlation between auditory threshold and transitory evoked otoacoustic emissions].
    Komazec Z; Milosević D; Mocko M; Dankuc D; Vlaski L
    Srp Arh Celok Lek; 2002; 130 Suppl 1():8-11. PubMed ID: 12395455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Implantation and Reimplantation of Cochlear Implant Electrodes in an In Vivo Animal Experimental Model (Macaca fascicularis).
    de Abajo J; Manrique-Huarte R; Sanhueza I; Alvarez-Gómez L; Zulueta-Santos C; Calavia D; Ramírez F; Manrique M
    Ear Hear; 2017; 38(1):e57-e68. PubMed ID: 27556522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla.
    Ryan A; Dallos P; McGee T
    J Acoust Soc Am; 1979 Aug; 66(2):370-8. PubMed ID: 512200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement of subtle auditory deficit in tinnitus patients with normal audiometric thresholds using evoked otoacoustic emissions and threshold equalizing noise tests.
    Ishak WS; Zhao F; Rajenderkumar D; Arif M
    Int Tinnitus J; 2013; 18(1):35-44. PubMed ID: 24995898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic influences on susceptibility of the auditory system to aging and environmental factors.
    Li HS
    Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preservation of Neural Sensitivity after Noise-Induced Suppression of Sensory Function.
    Guthrie OW
    J Am Acad Audiol; 2016 Jan; 27(1):49-61. PubMed ID: 26809326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of tinnitus patients with normal hearing sensitivity using TEOAEs and TEN test.
    Thabet EM
    Auris Nasus Larynx; 2009 Dec; 36(6):633-6. PubMed ID: 19285816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.