BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29663017)

  • 1. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder.
    Wen RT; Zhang FF; Zhang HT
    Psychopharmacology (Berl); 2018 Jun; 235(6):1793-1805. PubMed ID: 29663017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
    Kokkonen K; Kass DA
    Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota.
    Hou X; Rong C; Zhang Q; Song S; Cong Y; Zhang HT
    Int J Neuropsychopharmacol; 2023 Jan; 26(1):70-79. PubMed ID: 36087271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases.
    Guo L; Luo L; Ju R; Chen C; Zhu L; Li J; Yu X; Ye C; Zhang D
    Eur J Pharmacol; 2015 Jan; 746():14-21. PubMed ID: 25446933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity.
    Brescia M; Zaccolo M
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27706091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABCD of the phosphodiesterase family: interaction and differential activity in COPD.
    Halpin DM
    Int J Chron Obstruct Pulmon Dis; 2008; 3(4):543-61. PubMed ID: 19281073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets.
    Ahmad F; Murata T; Shimizu K; Degerman E; Maurice D; Manganiello V
    Oral Dis; 2015 Jan; 21(1):e25-50. PubMed ID: 25056711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic nucleotide phosphodiesterases (PDEs) in human osteoblastic cells; the effect of PDE inhibition on cAMP accumulation.
    Ahlström M; Pekkinen M; Huttunen M; Lamberg-Allardt C
    Cell Mol Biol Lett; 2005; 10(2):305-19. PubMed ID: 16010295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porcine detrusor cyclic nucleotide phosphodiesterase isoenzymes: characterization and functional effects of various phosphodiesterase inhibitors in vitro.
    Truss MC; Uckert S; Stief CG; Schulz-Knappe P; Hess R; Forssmann WG; Jonas U
    Urology; 1995 May; 45(5):893-901. PubMed ID: 7747383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion.
    Han P; Werber J; Surana M; Fleischer N; Michaeli T
    J Biol Chem; 1999 Aug; 274(32):22337-44. PubMed ID: 10428803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of phosphodiesterase PDE-3/PDE-4-specific inhibitors on vasoconstriction and cAMP-dependent vasorelaxation following balloon angioplasty.
    Zhao H; Quilley J; Montrose DC; Rajagopalan S; Guan Q; Smith CJ
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2973-81. PubMed ID: 17293498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure.
    Nadur NF; de Azevedo LL; Caruso L; Graebin CS; Lacerda RB; Kümmerle AE
    Eur J Med Chem; 2021 Feb; 212():113123. PubMed ID: 33412421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells.
    Lugnier C; Schini VB
    Biochem Pharmacol; 1990 Jan; 39(1):75-84. PubMed ID: 2153383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of a phosphodiesterase III in the lysis-sensitive target-induced elevation of cyclic AMP (cAMP) in human natural killer cells.
    Whalen MM; Crews JD
    Biochem Pharmacol; 2000 Aug; 60(4):499-506. PubMed ID: 10874124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide phosphodiesterases: critical modulators of endocrine, metabolic, and cardiovascular function and appealing therapeutic targets.
    Manganiello V
    Curr Opin Pharmacol; 2011 Dec; 11(6):646-8. PubMed ID: 22079477
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphodiesterase regulation of alcohol drinking in rodents.
    Logrip ML
    Alcohol; 2015 Dec; 49(8):795-802. PubMed ID: 26095589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries.
    Birk S; Edvinsson L; Olesen J; Kruuse C
    Eur J Pharmacol; 2004 Apr; 489(1-2):93-100. PubMed ID: 15063160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of cyclic GMP and cyclic AMP during neutrophil migration: involvement of phosphodiesterase type III.
    VanUffelen BE; de Koster BM; Elferink JG
    Biochem Pharmacol; 1998 Oct; 56(8):1061-3. PubMed ID: 9776319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3.
    Beierwaltes WH
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1376-81. PubMed ID: 16449359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.