BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 29663024)

  • 1. Neural motor control differs between bimanual common-goal vs. bimanual dual-goal tasks.
    Liao WW; Whitall J; Barton JE; McCombe Waller S
    Exp Brain Res; 2018 Jun; 236(6):1789-1800. PubMed ID: 29663024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of motor overflow on bimanual asymmetric force coordination.
    Cunningham DA; Roelle SM; Allexandre D; Potter-Baker KA; Sankarasubramanian V; Knutson JS; Yue GH; Machado AG; Plow EB
    Exp Brain Res; 2017 Apr; 235(4):1097-1105. PubMed ID: 28091708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-dependent effects of interhemispheric inhibition on motor control.
    Fling BW; Seidler RD
    Behav Brain Res; 2012 Jan; 226(1):211-7. PubMed ID: 21944939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of transcranial magnetic stimulation on bimanual movements.
    Chen JT; Lin YY; Shan DE; Wu ZA; Hallett M; Liao KK
    J Neurophysiol; 2005 Jan; 93(1):53-63. PubMed ID: 15331622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand.
    Perez MA; Cohen LG
    J Neurosci; 2008 May; 28(22):5631-40. PubMed ID: 18509024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimanual coordination of force enhances interhemispheric inhibition between the primary motor cortices.
    Hiraoka K; Ae M; Ogura N; Sano C; Shiomi K; Morita Y; Yokoyama H; Jono Y; Nomura Y; Tani K; Chujo Y
    Neuroreport; 2014 Oct; 25(15):1203-7. PubMed ID: 25144392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke.
    Takeuchi N; Tada T; Matsuo Y; Ikoma K
    Neurorehabil Neural Repair; 2012 Oct; 26(8):988-98. PubMed ID: 22412170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interhemispheric inhibition between dorsal premotor and primary motor cortices is released during preparation of unimanual but not bimanual movements.
    Denyer R; Greeley B; Greenhouse I; Boyd LA
    Eur J Neurosci; 2024 Feb; 59(3):415-433. PubMed ID: 38145976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interhemispheric asymmetry in motor cortex disinhibition during bimanual movement.
    Stinear JW; Byblow WD
    Brain Res; 2004 Oct; 1022(1-2):81-7. PubMed ID: 15353216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of motor cortex inhibition during motor imagery.
    Chong BW; Stinear CM
    J Neurophysiol; 2017 Apr; 117(4):1776-1784. PubMed ID: 28123007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contralateral and Ipsilateral Relationships between Intracortical Inhibition and Stopping Efficiency.
    Chowdhury NS; Livesey EJ; Harris JA
    Neuroscience; 2019 Sep; 415():10-17. PubMed ID: 31302263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements.
    Cardoso de Oliveira S; Gribova A; Donchin O; Bergman H; Vaadia E
    Eur J Neurosci; 2001 Dec; 14(11):1881-96. PubMed ID: 11860483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracortical inhibition and facilitation with unilateral dominant, unilateral nondominant and bilateral movement tasks in left- and right-handed adults.
    McCombe Waller S; Forrester L; Villagra F; Whitall J
    J Neurol Sci; 2008 Jun; 269(1-2):96-104. PubMed ID: 18336839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateralization of unimanual and bimanual motor imagery.
    Stinear CM; Fleming MK; Byblow WD
    Brain Res; 2006 Jun; 1095(1):139-47. PubMed ID: 16713588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in thresholds for intracortical excitability in chronic stroke: more than just altered intracortical inhibition.
    Edwards JD; Meehan SK; Linsdell MA; Borich MR; Anbarani K; Jones PW; Ferris J; Boyd LA
    Restor Neurol Neurosci; 2013; 31(6):693-705. PubMed ID: 23963339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences.
    Kazennikov O; Hyland B; Corboz M; Babalian A; Rouiller EM; Wiesendanger M
    Neuroscience; 1999 Mar; 89(3):661-74. PubMed ID: 10199603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modulation of short and long-latency interhemispheric inhibition during bimanually coordinated movements.
    Jordan HT; Schrafl-Altermatt M; Byblow WD; Stinear CM
    Exp Brain Res; 2021 May; 239(5):1507-1516. PubMed ID: 33687518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of intracortical inhibition during physically performed and mentally simulated balance tasks.
    Mouthon A; Ruffieux J; Taube W
    Eur J Appl Physiol; 2021 May; 121(5):1379-1388. PubMed ID: 33606094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performing two different actions simultaneously: The critical role of interhemispheric interactions during the preparation of bimanual movement.
    Fujiyama H; Van Soom J; Rens G; Cuypers K; Heise KF; Levin O; Swinnen SP
    Cortex; 2016 Apr; 77():141-154. PubMed ID: 26963084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-cortical correlates of motor inhibition: a comparison between selective and non-selective stop tasks.
    Tallet J; Barral J; Hauert CA
    Brain Res; 2009 Aug; 1284():68-76. PubMed ID: 19497311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.