These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29663097)
21. Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site. Adam V; Quaranta G; Loyaux-Lawniczak S Environ Sci Pollut Res Int; 2013 May; 20(5):3312-21. PubMed ID: 23093416 [TBL] [Abstract][Full Text] [Related]
22. Susceptibility of the strawberry crown moth (Lepidoptera: Sesiidae) to entomopathogenic nematodes. Bruck DJ; Edwards DL; Donahue KM J Econ Entomol; 2008 Apr; 101(2):251-5. PubMed ID: 18459385 [TBL] [Abstract][Full Text] [Related]
23. Cr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil. Long D; Tang X; Cai K; Chen G; Shen C; Shi J; Chen L; Chen Y J Microbiol Biotechnol; 2013 Aug; 23(8):1123-32. PubMed ID: 23727810 [TBL] [Abstract][Full Text] [Related]
24. Comparative transcriptomic analysis reveals novel insights into the response to Cr(VI) exposure in Cr(VI) tolerant ectomycorrhizal fungi Pisolithus sp. 1 LS-2017. Shi L; Dong P; Song W; Li C; Lu H; Wen Z; Wang C; Shen Z; Chen Y Ecotoxicol Environ Saf; 2020 Jan; 188():109935. PubMed ID: 31740233 [TBL] [Abstract][Full Text] [Related]
25. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Luís LG; Ferreira P; Fonte E; Oliveira M; Guilhermino L Aquat Toxicol; 2015 Jul; 164():163-74. PubMed ID: 26004740 [TBL] [Abstract][Full Text] [Related]
26. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060 [TBL] [Abstract][Full Text] [Related]
27. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Maqbool Z; Asghar HN; Shahzad T; Hussain S; Riaz M; Ali S; Arif MS; Maqsood M Ecotoxicol Environ Saf; 2015 Apr; 114():343-9. PubMed ID: 25066609 [TBL] [Abstract][Full Text] [Related]
28. Assessment of the human health risks posed by exposure to chromium-contaminated soils. Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927 [TBL] [Abstract][Full Text] [Related]
29. Density-dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host. Koppenhöfer AM; Kaya HK J Parasitol; 1995 Oct; 81(5):797-9. PubMed ID: 7472882 [TBL] [Abstract][Full Text] [Related]
30. Effect of application method on fitness of entomopathogenic nematodes emerging at different times. Perez EE; Lewis EE; Shapiro-Ilan DI J Nematol; 2004 Dec; 36(4):534-9. PubMed ID: 19262835 [TBL] [Abstract][Full Text] [Related]
31. Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with Steinernema carpocapsae. Chambers U; Bruck DJ; Olsen J; Walton VM J Econ Entomol; 2010 Apr; 103(2):416-22. PubMed ID: 20429457 [TBL] [Abstract][Full Text] [Related]
32. Enhanced biogeogenic controls on dichromate speciation in subsoil containment. Cj S; T S Ecotoxicol Environ Saf; 2020 Apr; 193():110327. PubMed ID: 32092580 [TBL] [Abstract][Full Text] [Related]
33. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Malan AP; Knoetze R; Moore SD J Invertebr Pathol; 2011 Oct; 108(2):115-25. PubMed ID: 21839086 [TBL] [Abstract][Full Text] [Related]
34. Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Jiang B; Zhu D; Song Y; Zhang D; Liu Z; Zhang X; Huang WE; Li G Biotechnol Lett; 2015 Feb; 37(2):343-8. PubMed ID: 25326171 [TBL] [Abstract][Full Text] [Related]
35. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales). Navarro PD; McMullen JG; Stock SP J Invertebr Pathol; 2014 Jan; 115():41-7. PubMed ID: 24211424 [TBL] [Abstract][Full Text] [Related]
36. Factors affecting entomopathogenic nematodes (Steinernematidae) for control of overwintering codling moth (Lepidoptera: Tortricidae) in fruit bins. Lacey LA; Neven LG; Headrick HL; Fritts R J Econ Entomol; 2005 Dec; 98(6):1863-9. PubMed ID: 16539105 [TBL] [Abstract][Full Text] [Related]
37. Soil texture, infective juvenile concentration, and soil organic matter influence the efficacy of Lankin G; Vidal-Retes G; Allende G; Castaneda-Alvarez C; San-Blas E; Aballay E J Nematol; 2020; 52():1-11. PubMed ID: 32185943 [TBL] [Abstract][Full Text] [Related]
38. Review of the allergic contact dermatitis hazard posed by chromium-contaminated soil: identifying a "safe" concentration. Paustenbach DJ; Sheehan PJ; Paull JM; Wisser LM; Finley BL J Toxicol Environ Health; 1992 Sep; 37(1):177-207. PubMed ID: 1522610 [TBL] [Abstract][Full Text] [Related]
39. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from south Italy. Caporale AG; Agrelli D; Rodríguez-González P; Adamo P; Alonso JIG Chemosphere; 2019 Oct; 233():92-100. PubMed ID: 31170588 [TBL] [Abstract][Full Text] [Related]
40. Compatibility of entomopathogenic nematodes with fipronil. García del Pino F; Jové M J Helminthol; 2005 Dec; 79(4):333-7. PubMed ID: 16336717 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]