BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29663663)

  • 1. Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae.
    Deaner M; Holzman A; Alper HS
    Biotechnol J; 2018 Sep; 13(9):e1700582. PubMed ID: 29663663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Engineering of Saccharomyces cerevisiae Using a Trifunctional CRISPR/Cas System for Simultaneous Gene Activation, Interference, and Deletion.
    Schultz C; Lian J; Zhao H
    Methods Enzymol; 2018; 608():265-276. PubMed ID: 30173764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system.
    Lian J; HamediRad M; Hu S; Zhao H
    Nat Commun; 2017 Nov; 8(1):1688. PubMed ID: 29167442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31665284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae.
    Zhang Y; Wang J; Wang Z; Zhang Y; Shi S; Nielsen J; Liu Z
    Nat Commun; 2019 Mar; 10(1):1053. PubMed ID: 30837474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Assembly of gRNA Arrays via Modular Cloning in Yeast.
    McCarty NS; Shaw WM; Ellis T; Ledesma-Amaro R
    ACS Synth Biol; 2019 Apr; 8(4):906-910. PubMed ID: 30939239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae.
    Ferreira R; Skrekas C; Nielsen J; David F
    ACS Synth Biol; 2018 Jan; 7(1):10-15. PubMed ID: 29161506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
    Zalatan JG; Lee ME; Almeida R; Gilbert LA; Whitehead EH; La Russa M; Tsai JC; Weissman JS; Dueber JE; Qi LS; Lim WA
    Cell; 2015 Jan; 160(1-2):339-50. PubMed ID: 25533786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas9.
    Walter JM; Schubert MG; Kung SH; Hawkins K; Platt DM; Hernday AD; Mahatdejkul-Meadows T; Szeto W; Chandran SS; Newman JD; Horwitz AA
    Methods Mol Biol; 2019; 2049():39-72. PubMed ID: 31602604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast.
    Walter JM; Chandran SS; Horwitz AA
    J Cell Physiol; 2016 Dec; 231(12):2563-9. PubMed ID: 26991244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs.
    Port F; Bullock SL
    Nat Methods; 2016 Oct; 13(10):852-4. PubMed ID: 27595403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.
    Morse NJ; Wagner JM; Reed KB; Gopal MR; Lauffer LH; Alper HS
    ACS Synth Biol; 2018 Apr; 7(4):1075-1084. PubMed ID: 29565571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    Metab Eng; 2017 Mar; 40():14-22. PubMed ID: 28212815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in
    Machens F; Ran G; Ruehmkorff C; Meyer Auf der Heyde J; Mueller-Roeber B; Hochrein L
    ACS Synth Biol; 2023 Apr; 12(4):1046-1057. PubMed ID: 37014634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.