These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29664107)

  • 1. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.
    Ross JL; Andersen PF
    Ground Water; 2018 Jul; 56(4):571-579. PubMed ID: 29664107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using an ensemble Kalman filter method to calibrate parameters of a prediction model for chemical transport from soil to surface runoff.
    Meng X; Tong J; Hu BX
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4404-4416. PubMed ID: 32939656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of prior model calibration on predictions with ensemble Kalman filter.
    Huber E; Hendricks-Franssen HJ; Kaiser HP; Stauffer F
    Ground Water; 2011; 49(6):845-58. PubMed ID: 21210793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tomographic imaging of dynamic objects with the ensemble Kalman filter.
    Butala MD; Frazin RA; Chen Y; Kamalabadi F
    IEEE Trans Image Process; 2009 Jul; 18(7):1573-87. PubMed ID: 19447717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling.
    Rajib AI; Assumaning GA; Chang SY; Addai EB
    Water Environ Res; 2017 Nov; 89(11):1952-1960. PubMed ID: 29080564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.
    Li L; Zhang M; Katzenstein K
    Ground Water; 2017 Nov; 55(6):871-878. PubMed ID: 28542717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance comparisons of the three data assimilation methods for improved predictability of PM
    Dash UK; Park SY; Song CH; Yu J; Yumimoto K; Uno I
    Environ Pollut; 2023 Apr; 322():121099. PubMed ID: 36682612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operational Hydrological Forecasting during the IPHEx-IOP Campaign - Meet the Challenge.
    Tao J; Wu D; Gourley J; Zhang SQ; Crow W; Peters-Lidard C; Barros AP
    J Hydrol (Amst); 2016 Oct; 541(Pt A):434-456. PubMed ID: 30377386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint identification of contaminant source characteristics and hydraulic conductivity in a tide-influenced coastal aquifer.
    Dodangeh A; Rajabi MM; Carrera J; Fahs M
    J Contam Hydrol; 2022 May; 247():103980. PubMed ID: 35245819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.
    Rastetter EB; Williams M; Griffin KL; Kwiatkowski BL; Tomasky G; Potosnak MJ; Stoy PC; Shaver GR; Stieglitz M; Hobbie JE; Kling GW
    Ecol Appl; 2010 Jul; 20(5):1285-301. PubMed ID: 20666250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of groundwater contaminant sources identification based on simulation optimization and ensemble Kalman filter.
    Li J; Wu Z; He H; Lu W
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):90081-90097. PubMed ID: 35861899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building a Better Forecast: Reformulating the Ensemble Kalman Filter for Improved Applications to Volcano Deformation.
    Albright JA; Gregg PM
    Earth Space Sci; 2023 Jan; 10(1):e2022EA002522. PubMed ID: 37034274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble data assimilation methods for improving river water quality forecasting accuracy.
    Loos S; Shin CM; Sumihar J; Kim K; Cho J; Weerts AH
    Water Res; 2020 Mar; 171():115343. PubMed ID: 31918389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating spatially-variable first-order rate constants in groundwater reactive transport systems.
    Bailey RT; Baù D
    J Contam Hydrol; 2011 Mar; 122(1-4):104-21. PubMed ID: 21185621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Potential Benefits of Handling Mixture Statistics via a Bi-Gaussian EnKF: Tests With All-Sky Satellite Infrared Radiances.
    Chan MY; Chen X; Anderson JL
    J Adv Model Earth Syst; 2023 Feb; 15(2):e2022MS003357. PubMed ID: 37034018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assimilation of multiple data sets with the ensemble Kalman filter to improve forecasts of forest carbon dynamics.
    Gao C; Wang H; Weng E; Lakshmivarahan S; Zhang Y; Luo Y
    Ecol Appl; 2011 Jul; 21(5):1461-73. PubMed ID: 21830695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assimilating flow and level data into an urban drainage surrogate model for forecasting flows and overflows.
    S V Lund N; Madsen H; Mazzoleni M; Solomatine D; Borup M
    J Environ Manage; 2019 Oct; 248():109052. PubMed ID: 31466185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of nonlinear extensions to the ensemble Kalman filter: Gaussian anamorphosis and two-step ensemble filters.
    Grooms I
    Comput Geosci; 2022; 26(3):633-650. PubMed ID: 35280324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating remotely sensed surface water extent into continental scale hydrology.
    Revilla-Romero B; Wanders N; Burek P; Salamon P; de Roo A
    J Hydrol (Amst); 2016 Dec; 543(Pt B):659-670. PubMed ID: 28111480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches.
    Fang L; Zhan X; Hain CR; Yin J; Liu J; Schull MA
    Remote Sens (Basel); 2018; 10(4):625. PubMed ID: 30847249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.