These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 29664152)

  • 1. Evaluation of the use of bias factors with water monitoring data.
    Mosquin PL; Aldworth J; Chen W
    Environ Toxicol Chem; 2018 Jul; 37(7):1864-1876. PubMed ID: 29664152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-covariate prediction of stream pesticide concentrations.
    Mosquin PL; Aldworth J; Chen W
    Environ Toxicol Chem; 2018 Jan; 37(1):260-273. PubMed ID: 28802014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds.
    Mosquin PL; Aldworth J; Chen W
    J Environ Qual; 2016 Sep; 45(5):1680-1687. PubMed ID: 27695761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water.
    Breckenridge CB; Campbell JL; Clewell HJ; Andersen ME; Valdez-Flores C; Sielken RL
    Toxicol Sci; 2016 Apr; 150(2):269-82. PubMed ID: 26794141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of atrazine sampling by polar organic chemical integrative samplers and Chemcatcher.
    Booij K; Chen S
    Environ Toxicol Chem; 2018 Jul; 37(7):1786-1798. PubMed ID: 29687480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple imputation for assessment of exposures to drinking water contaminants: evaluation with the Atrazine Monitoring Program.
    Jones RM; Stayner LT; Demirtas H
    Environ Res; 2014 Oct; 134():466-73. PubMed ID: 25461881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of discrete and integrative sampling accuracy in estimating pulsed aquatic exposures.
    Morrison SA; Luttbeg B; Belden JB
    Environ Pollut; 2016 Nov; 218():749-756. PubMed ID: 27511440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of upper centile concentrations using historical atrazine monitoring data from community water systems.
    Mosquin P; Whitmore RW; Chen W
    J Environ Qual; 2012; 41(3):834-44. PubMed ID: 22565265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany.
    Vonberg D; Vanderborght J; Cremer N; Pütz T; Herbst M; Vereecken H
    Water Res; 2014 Mar; 50():294-306. PubMed ID: 24188580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Economics of place-based monitoring under the safe drinking water act, part III: performance evaluation of place-based monitoring strategies.
    Brands E; Rajagopal R
    Environ Monit Assess; 2008 Aug; 143(1-3):103-20. PubMed ID: 17882516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak centiles of chlorpyrifos surface-water concentrations in the NAWQA and NASQAN programs.
    Mosquin PL; Aldworth J; Poletika NN
    Water Res; 2015 Feb; 69():261-273. PubMed ID: 25497425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.
    Pérez DJ; Okada E; De Gerónimo E; Menone ML; Aparicio VC; Costa JL
    Environ Toxicol Chem; 2017 Dec; 36(12):3206-3216. PubMed ID: 28631831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA.
    Byer JD; Struger J; Sverko E; Klawunn P; Todd A
    Chemosphere; 2011 Feb; 82(8):1155-60. PubMed ID: 21215422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS).
    Dalton RL; Pick FR; Boutin C; Saleem A
    Environ Pollut; 2014 Jun; 189():134-42. PubMed ID: 24661999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of silicone rubber rods as passive samplers for pesticides at two different flow velocities: Modeling of sampling rates under water boundary layer and polymer control.
    Martin A; Margoum C; Jolivet A; Assoumani A; El Moujahid B; Randon J; Coquery M
    Environ Toxicol Chem; 2018 Apr; 37(4):1208-1218. PubMed ID: 29193239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A weight-of-evidence approach for deriving a level of concern for atrazine that is protective of aquatic plant communities.
    Moore DR; Greer CD; Manning G; Wooding K; Beckett KJ; Brain RA; Marshall G
    Integr Environ Assess Manag; 2017 Jul; 13(4):686-701. PubMed ID: 27862949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of atrazine in surface waters by combination of POCIS passive sampling and ELISA detection.
    Cernoch I; Fránek M; Diblíková I; Hilscherová K; Randák T; Ocelka T; Bláha L
    J Environ Monit; 2011 Sep; 13(9):2582-7. PubMed ID: 21811729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of passive sampling devices for screening of micro-pollutants in marine aquaculture using LC-MS/MS.
    Martínez Bueno MJ; Hernando MD; Agüera A; Fernández-Alba AR
    Talanta; 2009 Feb; 77(4):1518-27. PubMed ID: 19084673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Seasonal Distribution, Composition, and Source Apportionment of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in the Main Stream of the Luanhe River].
    Wang YZ; Zhang SL; Kong FQ; Yuan Y
    Huan Jing Ke Xue; 2017 Oct; 38(10):4194-4211. PubMed ID: 29965203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.