BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29664226)

  • 1. Hidden partners: Using cross-docking calculations to predict binding sites for proteins with multiple interactions.
    Lagarde N; Carbone A; Sacquin-Mora S
    Proteins; 2018 Jul; 86(7):723-737. PubMed ID: 29664226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Great interactions: How binding incorrect partners can teach us about protein recognition and function.
    Vamparys L; Laurent B; Carbone A; Sacquin-Mora S
    Proteins; 2016 Oct; 84(10):1408-21. PubMed ID: 27287388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrypting protein surfaces by combining evolution, geometry, and molecular docking.
    Dequeker C; Laine E; Carbone A
    Proteins; 2019 Nov; 87(11):952-965. PubMed ID: 31199528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From complete cross-docking to partners identification and binding sites predictions.
    Dequeker C; Mohseni Behbahani Y; David L; Laine E; Carbone A
    PLoS Comput Biol; 2022 Jan; 18(1):e1009825. PubMed ID: 35089918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.
    Matsuzaki Y; Uchikoga N; Ohue M; Akiyama Y
    Adv Biochem Eng Biotechnol; 2017; 160():33-55. PubMed ID: 27830312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scoring optimisation of unbound protein-protein docking including protein binding site predictions.
    Schneider S; Zacharias M
    J Mol Recognit; 2012 Jan; 25(1):15-23. PubMed ID: 22213447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the prediction of protein interaction partners using physical docking.
    Wass MN; Fuentes G; Pons C; Pazos F; Valencia A
    Mol Syst Biol; 2011 Feb; 7():469. PubMed ID: 21326236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Interaction Energy Landscapes are Shaped by Functional and also Non-functional Partners.
    Schweke H; Mucchielli MH; Sacquin-Mora S; Bei W; Lopes A
    J Mol Biol; 2020 Feb; 432(4):1183-1198. PubMed ID: 31931010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information.
    Lopes A; Sacquin-Mora S; Dimitrova V; Laine E; Ponty Y; Carbone A
    PLoS Comput Biol; 2013; 9(12):e1003369. PubMed ID: 24339765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring protein-protein interactions using the site-identification by ligand competitive saturation methodology.
    Yu W; Jo S; Lakkaraju SK; Weber DJ; MacKerell AD
    Proteins; 2019 Apr; 87(4):289-301. PubMed ID: 30582220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein social behavior makes a stronger signal for partner identification than surface geometry.
    Laine E; Carbone A
    Proteins; 2017 Jan; 85(1):137-154. PubMed ID: 27802579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blind predictions of protein interfaces by docking calculations in CAPRI.
    Lensink MF; Wodak SJ
    Proteins; 2010 Nov; 78(15):3085-95. PubMed ID: 20839234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Protein-protein Interactions: An Overview.
    Slater O; Miller B; Kontoyianni M
    Curr Top Med Chem; 2020; 20(10):855-882. PubMed ID: 32101126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein binding supersites.
    Viswanathan R; Fajardo E; Steinberg G; Haller M; Fiser A
    PLoS Comput Biol; 2019 Jan; 15(1):e1006704. PubMed ID: 30615604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.