These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29664228)

  • 1. Measuring the Unmeasurable by IR Spectroscopy: Carbon Deposition Kinetics in Dry Reforming of Methane.
    Ren J; Lee AC; Cheng K; Li M; Chen Y
    Chemphyschem; 2018 Apr; ():. PubMed ID: 29664228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO
    Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J
    Front Chem; 2022; 10():993691. PubMed ID: 36118307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coke-Resistant Ni/CeZrO
    Sophiana IC; Iskandar F; Devianto H; Nishiyama N; Budhi YW
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Carbon Formation and its Impact on Methane Dry Reforming Kinetics on Rhodium-based Catalysts by Operando Raman Spectroscopy.
    Colombo R; Moroni G; Negri C; Delen G; Monai M; Donazzi A; Weckhuysen BM; Maestri M
    Angew Chem Int Ed Engl; 2024 Jul; ():e202408668. PubMed ID: 38958601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO
    Nikolaraki E; Goula G; Panagiotopoulou P; Taylor MJ; Kousi K; Kyriakou G; Kondarides DI; Lambert RM; Yentekakis IV
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas-A Simulation Study.
    Albano M; Madeira LM; Miguel CV
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.
    Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR
    Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Anti-Coking Properties of Ni/Al
    Shi Y; Wang S; Li Y; Yang F; Yu H; Chu Y; Li T; Yin H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO
    Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X
    Front Chem; 2020; 8():581923. PubMed ID: 33195071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts.
    Chein R; Yang Z
    ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel-based cerium zirconate inorganic complex structures for CO
    Martín-Espejo JL; Merkouri LP; Gándara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L
    J Environ Sci (China); 2024 Jun; 140():12-23. PubMed ID: 38331494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane Dry Reforming by Ni-Cu Nanoalloys Anchored on Periclase-Phase MgAlO
    Xiao Z; Hou F; Zhang J; Zheng Q; Xu J; Pan L; Wang L; Zou J; Zhang X; Li G
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48838-48854. PubMed ID: 34613699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane.
    Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A
    Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies.
    Fan MS; Abdullah AZ; Bhatia S
    ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.