These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29664261)

  • 21. AC impedance behaviors of electrochemically deposited Si-hydroxyapatite films on nanotube-formed Ti-Nb-Zr alloys.
    Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9014-9. PubMed ID: 25971001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ti-Zr-O nanotube arrays with controlled morphology, crystal structure and optical properties.
    Liu G; Lu H; Chen Z; Li F; Wang L; Watts J; Lu GQ; Cheng HM
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6501-10. PubMed ID: 19908556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface morphology of highly ordered nanotube formed and laser textured beta titanium alloys.
    Kim JU; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1876-9. PubMed ID: 23755610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoblast cell behavior on the new beta-type Ti-25Ta-25Nb alloy.
    Cimpean A; Mitran V; Ciofrangeanu CM; Galateanu B; Bertrand E; Gordin DM; Iordachescu D; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1554-63. PubMed ID: 24364960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Inoculant Alloy Selection and Particle Size on Efficiency of Isomorphic Inoculation of Ti-Al.
    Kennedy JR; Rouat B; Daloz D; Bouzy E; Zollinger J
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29693591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys.
    Kim ES; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8427-31. PubMed ID: 25958540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.
    Banerjee R; Nag S; Stechschulte J; Fraser HL
    Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy.
    Wang Y; Lu Z; Zhang K; Zhang D
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.
    Lu J; Zhao Y; Niu H; Zhang Y; Du Y; Zhang W; Huo W
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():36-44. PubMed ID: 26952395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanotube morphology and corrosion resistance of a low rigidity quaternary titanium alloy for biomedical applications.
    Saji VS; Choe HC; Ko YM; Ahn H
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4635-9. PubMed ID: 21128470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the Microstructure and Isothermal Oxidation of Silica and Alumina Scale Forming Si-23Fe-15Cr-15Ti-1Nb and Si-25Nb-5Al-5Cr-5Ti (at.%) Silicide Alloys.
    Hernández-Negrete O; Tsakiropoulos P
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution.
    Wang Z; Huang W; Li Y; He H; Zhou Y; Zheng Z
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1094-1102. PubMed ID: 28482473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys.
    Wu J; Li H; Yuan B; Gao Y
    J Mech Behav Biomed Mater; 2017 Nov; 75():574-580. PubMed ID: 28863399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solute lean Ti-Nb-Fe alloys: An exploratory study.
    Salvador CAF; Dal Bó MR; Costa FH; Taipina MO; Lopes ESN; Caram R
    J Mech Behav Biomed Mater; 2017 Jan; 65():761-769. PubMed ID: 27768940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.
    Wang Z; Li Y; Huang W; Chen X; He H
    J Mech Behav Biomed Mater; 2016 Oct; 63():361-374. PubMed ID: 27450038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys.
    Sopha H; Pohl D; Damm C; Hromadko L; Rellinghaus B; Gebert A; Macak JM
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):258-263. PubMed ID: 27770889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Control of Nanotube Morphology Using Various Factors for Dental Implant.
    Kim ES; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):181-4. PubMed ID: 26328325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface.
    Feng XJ; Macak JM; Albu SP; Schmuki P
    Acta Biomater; 2008 Mar; 4(2):318-23. PubMed ID: 17923448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.