These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29664323)

  • 1. Understanding the Interaction Between Oligopeptide and Water in Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy.
    Cheng D; Cai W; Shao X
    Appl Spectrosc; 2018 Sep; 72(9):1354-1361. PubMed ID: 29664323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the role of water in the aggregation of poly(N,N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy.
    Wang L; Zhu X; Cai W; Shao X
    Phys Chem Chem Phys; 2019 Mar; 21(10):5780-5789. PubMed ID: 30801574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the Water Confined in Hydrogel Using Near-Infrared Spectroscopy.
    Ma B; Cai W; Shao X
    Appl Spectrosc; 2022 Jul; 76(7):773-782. PubMed ID: 35255722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water can be a probe for sensing glucose in aqueous solutions by temperature dependent near infrared spectra.
    Cui X; Liu X; Yu X; Cai W; Shao X
    Anal Chim Acta; 2017 Mar; 957():47-54. PubMed ID: 28107833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent near-infrared spectroscopy.
    Wang S; Wang M; Han L; Sun Y; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120581. PubMed ID: 34776375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the effect of urea on the phase transition of poly(N-isopropylacrylamide) in aqueous solution by temperature-dependent near-infrared spectroscopy.
    Ma B; Wang L; Han L; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119573. PubMed ID: 33618264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water as a probe for serum-based diagnosis by temperature- dependent near-infrared spectroscopy.
    Cui X; Yu X; Cai W; Shao X
    Talanta; 2019 Nov; 204():359-366. PubMed ID: 31357305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Near-infrared spectral studies of hydrogen-bond in water-methanol mixtures].
    Yuan B; Dou XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1319-22. PubMed ID: 15762465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Structural Change in Protein Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy and Continuous Wavelet Transform.
    Fan M; Cai W; Shao X
    Appl Spectrosc; 2017 Mar; 71(3):472-479. PubMed ID: 27650983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent near-infrared spectra of bovine serum albumin in aqueous solutions: spectral analysis by principal component analysis and evolving factor analysis.
    Yuan B; Murayama K; Wu Y; Tsenkova R; Dou X; Era S; Ozaki Y
    Appl Spectrosc; 2003 Oct; 57(10):1223-9. PubMed ID: 14639749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of anomeric structural changes of glucose solutions using near-infrared spectra.
    Tanaka S; Kojić D; Tsenkova R; Yasui M
    Carbohydr Res; 2018 Jun; 463():40-46. PubMed ID: 29763789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.
    Chen Y; Chen W; Shi Z; Yang Y; Xu K
    Appl Spectrosc; 2009 May; 63(5):544-8. PubMed ID: 19470211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining water in model membranes by near infrared spectroscopy and multivariate analysis.
    Wenz JJ
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):673-682. PubMed ID: 29229525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between tau and water during the induced aggregation revealed by near-infrared spectroscopy.
    Sun Y; Ma L; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118046. PubMed ID: 31954360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis.
    Popescu CM; Navi P; Placencia Peña MI; Popescu MC
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():405-412. PubMed ID: 29065332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems.
    Tsenkova R; Kovacs Z; Kubota Y
    Subcell Biochem; 2015; 71():189-211. PubMed ID: 26438266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares.
    Gowen AA; Amigo JM; Tsenkova R
    Anal Chim Acta; 2013 Jan; 759():8-20. PubMed ID: 23260672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of Chloride Salt Solution by NIR Spectroscopy].
    Zhang B; Chen JH; Jiao MX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1840-3. PubMed ID: 26717736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis.
    Watanabe A; Morita S; Ozaki Y
    Appl Spectrosc; 2006 Sep; 60(9):1054-61. PubMed ID: 17002831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination by temperature dependent near-infrared spectra.
    Shao X; Kang J; Cai W
    Talanta; 2010 Aug; 82(3):1017-21. PubMed ID: 20678661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.