BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29665005)

  • 1. Myelination of the developing lateral olfactory tract and anterior commissure.
    Collins LN; Hill DL; Brunjes PC
    J Comp Neurol; 2018 Aug; 526(11):1843-1858. PubMed ID: 29665005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Demyelination of the Lateral Olfactory Tract and Anterior Commissure.
    Collins L; Brunjes P
    Neuroscience; 2020 May; 434():93-101. PubMed ID: 32224229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetyl-l-carnitine enhances myelination of regenerated fibers of the lateral olfactory tract.
    Fukushima N; Yokouchi K; Kuroiwa M; Kawagishi K; Moriizumi T
    Neurosci Lett; 2017 Jul; 653():215-219. PubMed ID: 28583580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitable Axonal Domains Adapt to Sensory Deprivation in the Olfactory System.
    George NM; Gentile Polese A; Merle L; Macklin WB; Restrepo D
    J Neurosci; 2022 Feb; 42(8):1491-1509. PubMed ID: 35022219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway.
    Colello RJ; Pott U; Schwab ME
    J Neurosci; 1994 May; 14(5 Pt 1):2594-605. PubMed ID: 7514208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional maturation of the oligodendrocytes and myelin basic protein expression in the olfactory bulb of the mouse.
    Jacque CM; Collet A; Raoul M; Monge M; Gumpel M
    Brain Res; 1985 Aug; 353(2):277-82. PubMed ID: 2412656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel cerebellar commissure and other myelinated axons in the Purkinje cell layer of a pond turtle (Trachemys scripta elegans).
    Daly DT; Ariel M
    J Comp Neurol; 2018 Dec; 526(17):2802-2823. PubMed ID: 30173417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligodendrocyte/myelin-immunoreactivity in the developing olfactory system.
    Philpot BD; Klintsova AY; Brunjes PC
    Neuroscience; 1995 Aug; 67(4):1009-19. PubMed ID: 7675203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A correlative light and electron microscopic study of postnatal myelination in the murine corpus callosum.
    Vincze A; Mázló M; Seress L; Komoly S; Abrahám H
    Int J Dev Neurosci; 2008 Oct; 26(6):575-84. PubMed ID: 18556167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis.
    Hardy RJ; Friedrich VL
    Dev Neurosci; 1996; 18(4):243-54. PubMed ID: 8911764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of spontaneous regeneration of olfactory structures with emphasis on myelination and re-innervation of cortical areas.
    Fukushima N; Yokouchi K; Sakamoto M; Sekiguchi Y; Koike H; Kawagishi K; Moriizumi T
    Neurosci Lett; 2013 Mar; 537():35-9. PubMed ID: 23353104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myelinated non-axonal neuronal elements in the feline olfactory bulb lack sites with a nodal structural differentiation.
    Remahl S; Hildebrand C
    Brain Res; 1985 Jan; 325(1-2):1-11. PubMed ID: 3978411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats.
    Butt AM; Ibrahim M; Berry M
    J Neurocytol; 1997 May; 26(5):327-38. PubMed ID: 9192296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation.
    Angelova A; Platel JC; Béclin C; Cremer H; Coré N
    J Comp Neurol; 2019 May; 527(7):1245-1260. PubMed ID: 30592042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-I on oligodendrocyte development and myelination in the central nervous system.
    Goddard DR; Berry M; Butt AM
    J Neurosci Res; 1999 Jul; 57(1):74-85. PubMed ID: 10397637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery.
    Marion CM; Radomski KL; Cramer NP; Galdzicki Z; Armstrong RC
    J Neurosci; 2018 Oct; 38(41):8723-8736. PubMed ID: 30143572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo.
    Almeida RG; Czopka T; Ffrench-Constant C; Lyons DA
    Development; 2011 Oct; 138(20):4443-50. PubMed ID: 21880787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional correlates of central white matter maturation in perinatal period in rabbits.
    Drobyshevsky A; Jiang R; Derrick M; Luo K; Tan S
    Exp Neurol; 2014 Nov; 261():76-86. PubMed ID: 24997240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey.
    LaMantia AS; Rakic P
    J Comp Neurol; 1994 Feb; 340(3):328-36. PubMed ID: 8188854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation.
    Barrera K; Chu P; Abramowitz J; Steger R; Ramos RL; Brumberg JC
    Dev Neurobiol; 2013 Apr; 73(4):297-314. PubMed ID: 23047707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.