BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29665232)

  • 1. Glucose-Responsive Trehalose Hydrogel for Insulin Stabilization and Delivery.
    Lee J; Ko JH; Mansfield KM; Nauka PC; Bat E; Maynard HD
    Macromol Biosci; 2018 May; 18(5):e1700372. PubMed ID: 29665232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery.
    Cai B; Luo Y; Guo Q; Zhang X; Wu Z
    Carbohydr Res; 2017 Jun; 445():32-39. PubMed ID: 28395252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-Responsive Self-Regulated Injectable Silk Fibroin Hydrogel for Controlled Insulin Delivery.
    Maity B; Moorthy H; Govindaraju T
    ACS Appl Mater Interfaces; 2023 Nov; 15(43):49953-49963. PubMed ID: 37847862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.
    Zhao F; Wu D; Yao D; Guo R; Wang W; Dong A; Kong D; Zhang J
    Acta Biomater; 2017 Dec; 64():334-345. PubMed ID: 28974477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ-Forming Protein-Polymer Hydrogel for Glucose-Responsive Insulin Release.
    Ali A; Saroj S; Saha S; Rakshit T; Pal S
    ACS Appl Bio Mater; 2023 Feb; 6(2):745-753. PubMed ID: 36624977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein.
    Liu Y; Lee J; Mansfield KM; Ko JH; Sallam S; Wesdemiotis C; Maynard HD
    Bioconjug Chem; 2017 Mar; 28(3):836-845. PubMed ID: 28044441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer.
    Lo YW; Sheu MT; Chiang WH; Chiu YL; Tu CM; Wang WY; Wu MH; Wang YC; Lu M; Ho HO
    Acta Biomater; 2019 Mar; 86():280-290. PubMed ID: 30616077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing pinacol esters of boronic acids for tuning viscoelastic properties of glucose-responsive polymer hydrogels: effects on insulin release kinetics.
    Ali A; Nouseen S; Saroj S; Shegane M; Majumder P; Puri A; Rakshit T; Manna D; Pal S
    J Mater Chem B; 2022 Sep; 10(37):7591-7599. PubMed ID: 35587736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenylboronic Acid Appended Pyrene-Based Low-Molecular-Weight Injectable Hydrogel: Glucose-Stimulated Insulin Release.
    Mandal D; Mandal SK; Ghosh M; Das PK
    Chemistry; 2015 Aug; 21(34):12042-52. PubMed ID: 26184777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery.
    Zhang M; Song CC; Du FS; Li ZC
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25905-25914. PubMed ID: 28714308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.
    Zhao L; Niu L; Liang H; Tan H; Liu C; Zhu F
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37563-37574. PubMed ID: 28994281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration.
    Tan H; Rubin JP; Marra KG
    Organogenesis; 2010; 6(3):173-80. PubMed ID: 21197220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-Linking-Density-Changeable Microneedle Patch Prepared from a Glucose-Responsive Hydrogel for Insulin Delivery.
    Chen X; Yu H; Wang L; Shen D; Li C; Zhou W
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4870-4882. PubMed ID: 34519208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyoxylic Hydrazone Linkage-Based PEG Hydrogels for Covalent Entrapment and Controlled Delivery of Doxorubicin.
    Sharma PK; Singh Y
    Biomacromolecules; 2019 Jun; 20(6):2174-2184. PubMed ID: 31021601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
    Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Incorporation of Trehalose within Hydrogels for Enhanced Long-Term Functional Stability and Controlled Release of Biomacromolecules.
    O'Shea TM; Webber MJ; Aimetti AA; Langer R
    Adv Healthc Mater; 2015 Aug; 4(12):1802-12. PubMed ID: 26088467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property.
    Khodaverdi E; Heidari Z; Tabassi SA; Tafaghodi M; Alibolandi M; Tekie FS; Khameneh B; Hadizadeh F
    AAPS PharmSciTech; 2015 Feb; 16(1):140-9. PubMed ID: 25224297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Student Award for Outstanding Research Winner in the Undergraduate Category for the 2017 Society for Biomaterials Annual Meeting and Exposition, April 5-8, 2017, Minneapolis, Minnesota: Development and characterization of stimuli-responsive hydrogel microcarriers for oral protein delivery.
    O'Connor C; Steichen S; Peppas NA
    J Biomed Mater Res A; 2017 May; 105(5):1243-1251. PubMed ID: 28177593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold-Responsive Nanocapsules Enable the Sole-Cryoprotectant-Trehalose Cryopreservation of β Cell-Laden Hydrogels for Diabetes Treatment.
    Cheng Y; Yu Y; Zhang Y; Zhao G; Zhao Y
    Small; 2019 Dec; 15(50):e1904290. PubMed ID: 31595687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release.
    Lee SY; Jeon SI; Sim SB; Byun Y; Ahn CH
    Acta Biomater; 2021 Sep; 131():286-301. PubMed ID: 34246803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.