These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 29665265)

  • 1. Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc-Air Batteries.
    Wang L; Wang Y; Wu M; Wei Z; Cui C; Mao M; Zhang J; Han X; Liu Q; Ma J
    Small; 2018 May; 14(20):e1800737. PubMed ID: 29665265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries.
    Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q
    ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.
    Li Y; Gong M; Liang Y; Feng J; Kim JE; Wang H; Hong G; Zhang B; Dai H
    Nat Commun; 2013; 4():1805. PubMed ID: 23651993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries.
    Liu X; Park M; Kim MG; Gupta S; Wu G; Cho J
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9654-8. PubMed ID: 26118973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible, Porous, and Metal-Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn-Air Battery.
    Niu Q; Chen B; Guo J; Nie J; Guo X; Ma G
    Nanomicro Lett; 2019 Jan; 11(1):8. PubMed ID: 34137961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-in-One Bifunctional Oxygen Electrode Films for Flexible Zn-Air Batteries.
    Zeng S; Tong X; Zhou S; Lv B; Qiao J; Song Y; Chen M; Di J; Li Q
    Small; 2018 Nov; 14(48):e1803409. PubMed ID: 30334376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Zeolitic-Imidazole Frameworks-Derived Interconnected Macroporous Carbon Matrix for Efficient Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries.
    Douka AI; Xu Y; Yang H; Zaman S; Yan Y; Liu H; Salam MA; Xia BY
    Adv Mater; 2020 Jul; 32(28):e2002170. PubMed ID: 32484260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc-Air Batteries.
    Wang M; Qian T; Liu S; Zhou J; Yan C
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21216-21224. PubMed ID: 28581707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries.
    Shinde SS; Lee CH; Sami A; Kim DH; Lee SU; Lee JH
    ACS Nano; 2017 Jan; 11(1):347-357. PubMed ID: 28001038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen doped CuCo
    Zhang Y; Chen Z; Tian J; Sun M; Yuan D; Zhang L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1105-1115. PubMed ID: 34739986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis.
    Wu X; Han X; Ma X; Zhang W; Deng Y; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12574-12583. PubMed ID: 28319373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mn
    Huang Z; Qin X; Gu X; Li G; Mu Y; Wang N; Ithisuphalap K; Wang H; Guo Z; Shi Z; Wu G; Shao M
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23900-23909. PubMed ID: 29947509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High-Rate and Long-Cycling Zinc-Air Batteries.
    Zhao CX; Liu JN; Wang J; Ren D; Yu J; Chen X; Li BQ; Zhang Q
    Adv Mater; 2021 Apr; 33(15):e2008606. PubMed ID: 33656780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PtCo nanoalloy embedded nitrogen-doped carbon nanotube for rechargeable Zn-air batteries.
    Zhou Q; Song M; Tian Y; Min M; Cui S; He X; Xiong C
    J Colloid Interface Sci; 2025 Jan; 677(Pt B):59-67. PubMed ID: 39137563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N,S-Codoped hierarchical porous carbon spheres embedded with cobalt nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.
    Zhu X; Dai J; Li L; Wu Z; Chen S
    Nanoscale; 2019 Nov; 11(44):21302-21310. PubMed ID: 31670323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Hwang SM; Park MS; Kim KJ; Kim JG; Dou SX; Kim JH; Lee JW
    Sci Rep; 2015 Jan; 5():7665. PubMed ID: 25563733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Iron-Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn-Air Batteries.
    Wu K; Zhang L; Yuan Y; Zhong L; Chen Z; Chi X; Lu H; Chen Z; Zou R; Li T; Jiang C; Chen Y; Peng X; Lu J
    Adv Mater; 2020 Aug; 32(32):e2002292. PubMed ID: 32613698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.
    Wang Y; Fu J; Zhang Y; Li M; Hassan FM; Li G; Chen Z
    Nanoscale; 2017 Oct; 9(41):15865-15872. PubMed ID: 28994845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Powered Electrochemical CO
    Han J; Shi L; Xie H; Song R; Wang D; Liu D
    Small; 2024 Oct; 20(40):e2401766. PubMed ID: 38837621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.