These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 29665457)
1. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel. Liu T; Xia S; Zhou B; Bai Q; Rohrer GS Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457 [TBL] [Abstract][Full Text] [Related]
2. Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties. Murgas B; Flipon B; Bozzolo N; Bernacki M Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407765 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Grain Boundary Network and Improvement of Intergranular Cracking Resistance in 316L Stainless Steel after Grain Boundary Engineering. Liu T; Xia S; Bai Q; Zhou B; Lu Y; Shoji T Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30642063 [TBL] [Abstract][Full Text] [Related]
4. Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study. Ziętala M; Durejko T; Panowicz R; Konarzewski M Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142708 [TBL] [Abstract][Full Text] [Related]
5. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel. Rahimi S; Engelberg DL; Duff JA; Marrow TJ J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463 [TBL] [Abstract][Full Text] [Related]
7. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel. Engelberg DL; Humphreys FJ; Marrow TJ J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional studies of intergranular carbides in austenitic stainless steel. Ochi M; Kawano R; Maeda T; Sato Y; Teranishi R; Hara T; Kikuchi M; Kaneko K Microscopy (Oxf); 2017 Apr; 66(2):89-94. PubMed ID: 27927874 [TBL] [Abstract][Full Text] [Related]
9. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel. Cizek P; Whiteman JA; Rainforth WM; Beynon JH J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696 [TBL] [Abstract][Full Text] [Related]
10. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime. Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746 [TBL] [Abstract][Full Text] [Related]
11. Microstructure and Nanoindentation Behavior of FeCoNiAlTi High-Entropy Alloy-Reinforced 316L Stainless Steel Composite Fabricated by Selective Laser Melting. Zhang X; Yang D; Jia Y; Wang G Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903136 [TBL] [Abstract][Full Text] [Related]
12. An alignment algorithm using coherent twin boundaries as internal reference in 3D-EBSD. Li H; Xia S; Bai Q; Liu T; Zhang Y J Microsc; 2025 Jan; 297(1):43-56. PubMed ID: 39149876 [TBL] [Abstract][Full Text] [Related]
13. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel. Barcellini C; Dumbill S; Jimenez-Melero E J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019 [TBL] [Abstract][Full Text] [Related]
14. Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel. Tsai SP; Konijnenberg PJ; Gonzalez I; Hartke S; Griffiths TA; Herbig M; Kawano-Miyata K; Taniyama A; Sano N; Zaefferer S Rev Sci Instrum; 2022 Sep; 93(9):093707. PubMed ID: 36182491 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method. Endo T; Sugino Y; Ohono N; Ukai S; Miyazaki N; Wang Y; Ohnuki S Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i23. PubMed ID: 25359819 [TBL] [Abstract][Full Text] [Related]
16. A quantitative evaluation of microstructure by electron back-scattered diffraction pattern quality variations. Kang SH; Jin HH; Jang J; Choi YS; Oh KH; Foley DC; Zhang X Microsc Microanal; 2013 Aug; 19 Suppl 5():83-8. PubMed ID: 23920181 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films. Bastos A; Zaefferer S; Raabe D J Microsc; 2008 Jun; 230(Pt 3):487-98. PubMed ID: 18503675 [TBL] [Abstract][Full Text] [Related]
18. Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. Meisnar M; Vilalta-Clemente A; Gholinia A; Moody M; Wilkinson AJ; Huin N; Lozano-Perez S Micron; 2015 Aug; 75():1-10. PubMed ID: 25974882 [TBL] [Abstract][Full Text] [Related]
19. EBSD analysis of spark plasma sintered SS316-B Baranidharan K; Thirumalai Kumaran S; Uthayakumar M; Parameswaran P; Babu DA Micron; 2023 Mar; 166():103401. PubMed ID: 36587488 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Grain Size in 316L Stainless Steel Using the Attenuation of Rayleigh Wave Measured by Air-Coupled Transducer. Wang M; Bu Y; Dai Z; Zeng S Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]