BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29665487)

  • 1. Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents.
    Syafiuddin A; Salmiati S; Jonbi J; Fulazzaky MA
    J Environ Manage; 2018 Jul; 218():59-70. PubMed ID: 29665487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the interaction of silver nanoparticles with pepsin and its adsorption isotherms and kinetics.
    Li X; Wang K; Peng Y
    Chem Biol Interact; 2018 Apr; 286():52-59. PubMed ID: 29530510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding behaviors and kinetics studies on the interaction of silver nanoparticles with trypsin.
    Li X; Yan Y; Cheng X; Guo W; Peng Y
    Int J Biol Macromol; 2018 Jul; 114():836-843. PubMed ID: 29605250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):401-11. PubMed ID: 17289259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen rich core-shell magnetic mesoporous silica as an effective adsorbent for removal of silver nanoparticles from water.
    Zhang X; Zhang Y; Zhang X; Li S; Huang Y
    J Hazard Mater; 2017 Sep; 337():1-9. PubMed ID: 28501638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples.
    Madrakian T; Afkhami A; Ahmadi M
    Chemosphere; 2013 Jan; 90(2):542-7. PubMed ID: 23021384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced corrosion inhibition effect of chitosan for St37 in 15% H
    Solomon MM; Gerengi H; Kaya T; Umoren SA
    Int J Biol Macromol; 2017 Nov; 104(Pt A):638-649. PubMed ID: 28625837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption.
    Ghaedi M; Rozkhoosh Z; Asfaram A; Mirtamizdoust B; Mahmoudi Z; Bazrafshan AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():176-86. PubMed ID: 25498812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal.
    Coruh S; Senel G; Ergun ON
    J Hazard Mater; 2010 Aug; 180(1-3):486-92. PubMed ID: 20483536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of adsorption isotherm models and its appropriate selection.
    Rajahmundry GK; Garlapati C; Kumar PS; Alwi RS; Vo DN
    Chemosphere; 2021 Aug; 276():130176. PubMed ID: 33714156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size characterization of silver nanoparticles after separation from silver ions in environmental water using magnetic reduced graphene oxide.
    Luo L; Yang Y; Li H; Ding R; Wang Q; Yang Z
    Sci Total Environ; 2018 Jan; 612():1215-1222. PubMed ID: 28892865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent.
    Dastafkan K; Khajeh M; Bohlooli M; Ghaffari-Moghaddam M; Sheibani N
    Talanta; 2015 Nov; 144():1377-86. PubMed ID: 26452972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis.
    Eddy NO; Garg R; Garg R; Ukpe RA; Abugu H
    Environ Monit Assess; 2023 Dec; 196(1):65. PubMed ID: 38112987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption kinetics of As(V) with iron-oxide-coated cement-a new adsorbent and its application in the removal of arsenic from real-life groundwater samples.
    Kundu S; Gupta AA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(12):2227-46. PubMed ID: 16319020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics.
    Khan SS; Srivatsan P; Vaishnavi N; Mukherjee A; Chandrasekaran N
    J Hazard Mater; 2011 Aug; 192(1):299-306. PubMed ID: 21684082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption.
    Ghaedi M; Ansari A; Sahraei R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():687-94. PubMed ID: 23831942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue.
    Fan L; Zhang Y; Luo C; Lu F; Qiu H; Sun M
    Int J Biol Macromol; 2012 Mar; 50(2):444-50. PubMed ID: 22227306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and isotherm studies on adsorption of fluoride by limonite with batch technique.
    Sahin R; Tapadia K; Sharma A
    J Environ Biol; 2016 Sep; 37(5):919-26. PubMed ID: 29251484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the efficiency of Cu and silver nanoparticle loaded on supports for the removal of Eosin Y from aqueous solution: Kinetic and isotherm study.
    Ravanan M; Ghaedi M; Ansari A; Taghizadeh F; Elhamifar D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():467-72. PubMed ID: 24418691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of elemental mercury adsorption by silver supported material.
    Khunphonoi R; Khamdahsag P; Chiarakorn S; Grisdanurak N; Paerungruang A; Predapitakkun S
    J Environ Sci (China); 2015 Jun; 32():207-16. PubMed ID: 26040747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.