BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29665575)

  • 1. Role of fungal laccase in iodide oxidation in soils.
    Nihei R; Usami M; Taguchi T; Amachi S
    J Environ Radioact; 2018 Sep; 189():127-134. PubMed ID: 29665575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.
    Seki M; Oikawa J; Taguchi T; Ohnuki T; Muramatsu Y; Sakamoto K; Amachi S
    Environ Sci Technol; 2013 Jan; 47(1):390-7. PubMed ID: 23194146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laccase activity in soils: considerations for the measurement of enzyme activity.
    Eichlerová I; Šnajdr J; Baldrian P
    Chemosphere; 2012 Aug; 88(10):1154-60. PubMed ID: 22475148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decolorization of recalcitrant dyes by a multicopper oxidase produced by Iodidimonas sp. Q-1 with iodide as a novel inorganic natural redox mediator.
    Taguchi T; Ebihara K; Yanagisaki C; Yoshikawa J; Horiguchi H; Amachi S
    Sci Rep; 2018 Apr; 8(1):6717. PubMed ID: 29712927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria.
    Otto B; Schlosser D
    Planta; 2014 Dec; 240(6):1225-36. PubMed ID: 25115562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laccase-catalysed iodide oxidation in presence of methyl syringate.
    Kulys J; Bratkovskaja I; Vidziunaite R
    Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First description of a laccase-like enzyme in soil algae.
    Otto B; Schlosser D; Reisser W
    Arch Microbiol; 2010 Sep; 192(9):759-68. PubMed ID: 20623267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of low molecular compounds and soil humic acid by two domain laccase of Streptomyces puniceus in the presence of ferulic and caffeic acids.
    Trubitsina LI; Lisov AV; Belova OV; Trubitsin IV; Demin VV; Konstantinov AI; Zavarzina AG; Leontievsky AA
    PLoS One; 2020; 15(9):e0239005. PubMed ID: 32946485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators.
    Cambria MT; Minniti Z; Librando V; Cambria A
    Appl Biochem Biotechnol; 2008 Apr; 149(1):1-8. PubMed ID: 18350382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase.
    Jeon JR; Murugesan K; Kim YM; Kim EJ; Chang YS
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):783-90. PubMed ID: 18987855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics.
    Bankole PO; Semple KT; Jeon BH; Govindwar SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111742. PubMed ID: 33396068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2.
    Shiroyama K; Kawasaki Y; Unno Y; Amachi S
    Biosci Biotechnol Biochem; 2015; 79(11):1898-905. PubMed ID: 26041311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.
    Lusa M; Bomberg M; Aromaa H; Knuutinen J; Lehto J
    J Environ Radioact; 2015 May; 143():110-122. PubMed ID: 25752706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps.
    Hattori M; Konishi H; Tamura Y; Konno K; Sogawa K
    J Insect Physiol; 2005 Dec; 51(12):1359-65. PubMed ID: 16216260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance.
    Ausec L; Berini F; Casciello C; Cretoiu MS; van Elsas JD; Marinelli F; Mandic-Mulec I
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6261-6276. PubMed ID: 28589226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy.
    Li D; Xu C; Yeager CM; Lin P; Xing W; Schwehr KA; Chen N; Arthur Z; Kaplan DI; Santschi PH
    Environ Sci Technol; 2019 Nov; 53(21):12416-12424. PubMed ID: 31553176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into the oxidation of sinapic acid by CotA laccase.
    Xie T; Liu Z; Liu Q; Wang G
    J Struct Biol; 2015 May; 190(2):155-61. PubMed ID: 25799944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp.
    Ausec L; Črnigoj M; Šnajder M; Ulrih NP; Mandic-Mulec I
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):9987-99. PubMed ID: 26227413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Surface Display Fungal Laccase as a Renewable Biocatalyst for Degradation of Persistent Micropollutants Bisphenol A and Sulfamethoxazole.
    Chen Y; Stemple B; Kumar M; Wei N
    Environ Sci Technol; 2016 Aug; 50(16):8799-808. PubMed ID: 27414990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.