BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29665962)

  • 1. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus.
    Pozdnyakova N; Dubrovskaya E; Chernyshova M; Makarov O; Golubev S; Balandina S; Turkovskaya O
    Fungal Biol; 2018 May; 122(5):363-372. PubMed ID: 29665962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus.
    Elhusseiny SM; Amin HM; Shebl RI
    Int Microbiol; 2019 Jun; 22(2):217-225. PubMed ID: 30810987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms.
    Li X; Lin X; Zhang J; Wu Y; Yin R; Feng Y; Wang Y
    Curr Microbiol; 2010 May; 60(5):336-42. PubMed ID: 19924475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1].
    Pozdniakova NN; Nikiforova SV; Makarov OE; Turkovskaia OV
    Prikl Biokhim Mikrobiol; 2011; 47(5):595-601. PubMed ID: 22232903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Degradation of fluorene and fluoranthene by the basidiomycete Pleurotus ostreatus].
    Pozdnyakova NN; Chernyshova MP; Grinev VS; Landesman EO; Koroleva OV; Turkovskaya OV
    Prikl Biokhim Mikrobiol; 2016; 52(6):590-8. PubMed ID: 29513481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate.
    García-Delgado C; Jiménez-Ayuso N; Frutos I; Gárate A; Eymar E
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8690-9. PubMed ID: 23716079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil.
    Baldrian P; in Der Wiesche C; Gabriel J; Nerud F; Zadrazil F
    Appl Environ Microbiol; 2000 Jun; 66(6):2471-8. PubMed ID: 10831426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1.
    Nikiforova SV; Pozdnyakova NN; Turkovskaya OV
    Curr Microbiol; 2009 Jun; 58(6):554-8. PubMed ID: 19194747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production.
    Hestbjerg H; Willumsen PA; Christensen M; Andersen O; Jacobsen CS
    Environ Toxicol Chem; 2003 Apr; 22(4):692-8. PubMed ID: 12685699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.
    Byss M; Elhottová D; Tříska J; Baldrian P
    Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.
    García-Delgado C; Yunta F; Eymar E
    J Hazard Mater; 2015 Dec; 300():281-288. PubMed ID: 26188871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria.
    Andersson BE; Lundstedt S; Tornberg K; Schnürer Y; Oberg LG; Mattiasson B
    Environ Toxicol Chem; 2003 Jun; 22(6):1238-43. PubMed ID: 12785579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of Pleurotus ostreatus isolates for their ligninolytic properties during cultivation on natural substrates.
    Eichlerová I; Homolka L; Nerud F; Zadrazil F; Baldrian P; Gabriel J
    Biodegradation; 2000; 11(5):279-87. PubMed ID: 11487057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata.
    Pozdnyakova N; Schlosser D; Dubrovskaya E; Balandina S; Sigida E; Grinev V; Turkovskaya O
    World J Microbiol Biotechnol; 2018 Aug; 34(9):133. PubMed ID: 30109517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation.
    García-Delgado C; D'Annibale A; Pesciaroli L; Yunta F; Crognale S; Petruccioli M; Eymar E
    Sci Total Environ; 2015 Mar; 508():20-8. PubMed ID: 25437949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycoremediation of PAH-contaminated soil.
    Bhatt M; Cajthaml T; Sasek V
    Folia Microbiol (Praha); 2002; 47(3):255-8. PubMed ID: 12094734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi.
    Novotný C; Erbanová P; Sasek V; Kubátová A; Cajthaml T; Lang E; Krahl J; Zadrazil F
    Biodegradation; 1999 Jun; 10(3):159-68. PubMed ID: 10492884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons.
    Pozdnyakova NN
    Biotechnol Res Int; 2012; 2012():243217. PubMed ID: 22830035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase.
    Pickard MA; Roman R; Tinoco R; Vazquez-Duhalt R
    Appl Environ Microbiol; 1999 Sep; 65(9):3805-9. PubMed ID: 10473379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation and transformation of benzo[a]pyrene by using a white-rot fungus Pleurotus eryngii F032.
    Hadibarata T; Kristanti RA; Bilal M; Al-Mohaimeed AM; Chen TW; Lam MK
    Chemosphere; 2022 Nov; 307(Pt 3):136014. PubMed ID: 35970216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.