These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29665962)
61. Nephroprotective Effect of Ahmed OM; Ebaid H; El-Nahass ES; Ragab M; Alhazza IM Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32937925 [TBL] [Abstract][Full Text] [Related]
62. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. Simarro R; González N; Bautista LF; Molina MC FEMS Microbiol Ecol; 2013 Feb; 83(2):438-49. PubMed ID: 22963246 [TBL] [Abstract][Full Text] [Related]
63. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Wang C; Sun H; Li J; Li Y; Zhang Q Chemosphere; 2009 Oct; 77(6):733-8. PubMed ID: 19751947 [TBL] [Abstract][Full Text] [Related]
64. Production of lignocellulose-degrading enzymes and changes in soil bacterial communities during the growth of Pleurotus ostreatus in soil with different carbon content. Snajdr J; Baldrian P Folia Microbiol (Praha); 2006; 51(6):579-90. PubMed ID: 17455795 [TBL] [Abstract][Full Text] [Related]
65. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. Batista-García RA; Kumar VV; Ariste A; Tovar-Herrera OE; Savary O; Peidro-Guzmán H; González-Abradelo D; Jackson SA; Dobson ADW; Sánchez-Carbente MDR; Folch-Mallol JL; Leduc R; Cabana H J Environ Manage; 2017 Aug; 198(Pt 2):1-11. PubMed ID: 28499155 [TBL] [Abstract][Full Text] [Related]
66. Bacterial interactions with the mycelium of the cultivated edible mushrooms Agaricus bisporus and Pleurotus ostreatus. Shamugam S; Kertesz MA J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626759 [TBL] [Abstract][Full Text] [Related]
67. Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus. Cardoso RVC; Fernandes Â; Oliveira MBPP; Calhelha RC; Barros L; Martins A; Ferreira ICFR Food Funct; 2017 Jun; 8(6):2155-2164. PubMed ID: 28534588 [TBL] [Abstract][Full Text] [Related]
68. Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. van Herwijnen R; Wattiau P; Bastiaens L; Daal L; Jonker L; Springael D; Govers HA; Parsons JR Res Microbiol; 2003 Apr; 154(3):199-206. PubMed ID: 12706509 [TBL] [Abstract][Full Text] [Related]
69. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Lipińska A; Wyszkowska J; Kucharski J Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339 [TBL] [Abstract][Full Text] [Related]
70. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Li X; Li P; Lin X; Zhang C; Li Q; Gong Z J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657 [TBL] [Abstract][Full Text] [Related]
71. Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures. Bhattacharya S; Das A; Palaniswamy M; Angayarkanni J J Basic Microbiol; 2017 Feb; 57(2):95-103. PubMed ID: 27874973 [TBL] [Abstract][Full Text] [Related]
72. Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. Alcalde M; Bulter T; Arnold FH J Biomol Screen; 2002 Dec; 7(6):547-53. PubMed ID: 14599353 [TBL] [Abstract][Full Text] [Related]
73. Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production. Pardo-Giménez A; Catalán L; Carrasco J; Álvarez-Ortí M; Zied D; Pardo J J Sci Food Agric; 2016 Aug; 96(11):3838-45. PubMed ID: 26692380 [TBL] [Abstract][Full Text] [Related]
74. Changes in the activities of enzymes involved in the degradation of butylbenzyl phthalate by Pleurotus ostreatus. Hwang SS; Kim HY; Ka JO; Song HG J Microbiol Biotechnol; 2012 Feb; 22(2):239-43. PubMed ID: 22370356 [TBL] [Abstract][Full Text] [Related]
75. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Wu M; Xu Y; Ding W; Li Y; Xu H Appl Microbiol Biotechnol; 2016 Aug; 100(16):7249-61. PubMed ID: 27102128 [TBL] [Abstract][Full Text] [Related]
76. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Godoy P; Reina R; Calderón A; Wittich RM; García-Romera I; Aranda E Environ Sci Pollut Res Int; 2016 Oct; 23(20):20985-20996. PubMed ID: 27488713 [TBL] [Abstract][Full Text] [Related]
77. A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation. Premnath N; Mohanrasu K; Guru Raj Rao R; Dinesh GH; Prakash GS; Ananthi V; Ponnuchamy K; Muthusamy G; Arun A Chemosphere; 2021 Oct; 280():130608. PubMed ID: 33962296 [TBL] [Abstract][Full Text] [Related]
78. Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene. Kazunga C; Aitken MD; Gold A; Sangaiah R Environ Sci Technol; 2001 Mar; 35(5):917-22. PubMed ID: 11351535 [TBL] [Abstract][Full Text] [Related]
79. White-rot fungus Merulius tremellosus KUC9161 identified as an effective degrader of polycyclic aromatic hydrocarbons. Lee H; Jang Y; Kim JM; Kim GH; Kim JJ J Basic Microbiol; 2013 Feb; 53(2):195-9. PubMed ID: 22733386 [TBL] [Abstract][Full Text] [Related]