These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 29666)
1. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of 'probes'. Cabantchik ZI; Knauf PA; Rothstein A Biochim Biophys Acta; 1978 Sep; 515(3):239-302. PubMed ID: 29666 [No Abstract] [Full Text] [Related]
2. Monocarboxylate transport in erythrocytes. Deuticke B J Membr Biol; 1982; 70(2):89-103. PubMed ID: 6764785 [No Abstract] [Full Text] [Related]
3. The kinetics of the titratable carrier for anion exchange in erythrocytes. Gunn RB; Fröhlich O Ann N Y Acad Sci; 1980; 341():384-93. PubMed ID: 6249152 [No Abstract] [Full Text] [Related]
4. Effects of diethyl ether on membrane lipid ordering and on rotational dynamics of the anion exchange protein in intact human erythrocytes: correlations with anion exchange function. Cobb CE; Juliao S; Balasubramanian K; Staros JV; Beth AH Biochemistry; 1990 Dec; 29(48):10799-806. PubMed ID: 2176884 [TBL] [Abstract][Full Text] [Related]
5. A model for the action of the anion exchange protein of the red blood cell. Rothstein A; Knauf PA; Grinstein S; Shami Y Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039 [TBL] [Abstract][Full Text] [Related]
6. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. Schnell KF; Gerhardt S; Schöppe-Fredenburg A J Membr Biol; 1977 Jan; 30(4):319-50. PubMed ID: 14260 [No Abstract] [Full Text] [Related]
7. Functional characterization of anion transport system isolated from human erythrocyte membranes. Wolosin JM; Ginsburg H; Cabantchik ZI J Biol Chem; 1977 Apr; 252(7):2419-27. PubMed ID: 14965 [TBL] [Abstract][Full Text] [Related]
8. Band 3 protein-mediated nonelectrogenic proton equilibration across the membranes of the red blood cells of mammals, amphibians, and fish. Passow H; Berghout A; Romano L Prog Clin Biol Res; 1984; 164():95-102. PubMed ID: 6097916 [No Abstract] [Full Text] [Related]
9. Chloride in the human erythrocyte: distribution and transport between cellular and extracellular fluids and structural features of the cell membrane. Dalmark M Prog Biophys Mol Biol; 1976; 31(2):145-64. PubMed ID: 10601 [No Abstract] [Full Text] [Related]
10. Erythrocyte membrane structure and function. Tanner MJ Ciba Found Symp; 1983; 94():3-23. PubMed ID: 6551238 [TBL] [Abstract][Full Text] [Related]
11. Polymerization of membrane components in aging red blood cells. Jain SK; Hochstein P Biochem Biophys Res Commun; 1980 Jan; 92(1):247-54. PubMed ID: 7356456 [No Abstract] [Full Text] [Related]
12. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Haest CW Biochim Biophys Acta; 1982 Dec; 694(4):331-52. PubMed ID: 6218824 [No Abstract] [Full Text] [Related]
13. Reconstitution of band 3, the erythrocyte anion exchange protein. Ross AH; McConnell HM Biochem Biophys Res Commun; 1977 Feb; 74(4):1318-25. PubMed ID: 843364 [No Abstract] [Full Text] [Related]
14. Diethylpyrocarbonate interferes with lipid-protein interaction and glucose transport in the human red cell membrane. Zimmer G; Lacko L; Wittke B Experientia; 1979 May; 35(5):610-2. PubMed ID: 36290 [TBL] [Abstract][Full Text] [Related]
15. The physiology of anion transport in red cells. Brahm J Prog Hematol; 1986; 14():1-21. PubMed ID: 2418461 [No Abstract] [Full Text] [Related]
16. [Biophysical changes in the erythrocyte membrane in diabetes mellitus]. Otsuji S; Kamada T Rinsho Byori; 1982 Aug; 30(8):888-97. PubMed ID: 6757493 [No Abstract] [Full Text] [Related]
17. The membrane and the lesions of storage in preserved red cells. Wolfe LC Transfusion; 1985; 25(3):185-203. PubMed ID: 3890284 [No Abstract] [Full Text] [Related]
18. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Lux SE Semin Hematol; 1979 Jan; 16(1):21-51. PubMed ID: 370983 [No Abstract] [Full Text] [Related]
19. Reconstitution of the erythrocyte anion transport system: in vitro and in vivo approaches. Cabantchik ZI; Volsky DJ; Ginsburg H; Loyter A Ann N Y Acad Sci; 1980; 341():444-54. PubMed ID: 6249154 [No Abstract] [Full Text] [Related]
20. [Sedimentation rate of erythrocytes as an indicator for phase transitions in the membrane]. Beutel U; Glaser R Acta Biol Med Ger; 1977; 36(5-6):921-4. PubMed ID: 23642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]