These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29666370)

  • 1. Methanol-essential growth of Escherichia coli.
    Meyer F; Keller P; Hartl J; Gröninger OG; Kiefer P; Vorholt JA
    Nat Commun; 2018 Apr; 9(1):1508. PubMed ID: 29666370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle.
    Keller P; Noor E; Meyer F; Reiter MA; Anastassov S; Kiefer P; Vorholt JA
    Nat Commun; 2020 Oct; 11(1):5403. PubMed ID: 33106470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
    Woolston BM; King JR; Reiter M; Van Hove B; Stephanopoulos G
    Nat Commun; 2018 Jun; 9(1):2387. PubMed ID: 29921903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli.
    Wu T; Gómez-Coronado PA; Kubis A; Lindner SN; Marlière P; Erb TJ; Bar-Even A; He H
    Nat Commun; 2023 Dec; 14(1):8490. PubMed ID: 38123535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus.
    Jakobsen ØM; Benichou A; Flickinger MC; Valla S; Ellingsen TE; Brautaset T
    J Bacteriol; 2006 Apr; 188(8):3063-72. PubMed ID: 16585766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanol-dependent growth of Corynebacterium glutamicum.
    Fan L; Wang Y; Qian J; Gao N; Zhang Z; Ni X; Sun L; Yuan Q; Zheng P; Sun J
    Microb Biotechnol; 2021 Jul; 14(4):1797-1808. PubMed ID: 34132489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis.
    Samanta D; Rauniyar S; Saxena P; Sani RK
    mSystems; 2024 Jun; 9(6):e0024824. PubMed ID: 38695578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking two
    Espinosa MI; Williams TC; Pretorius IS; Paulsen IT
    Synth Syst Biotechnol; 2019 Dec; 4(4):180-188. PubMed ID: 31667368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Methylotrophic Cells via Bottom-Up Integration of a Methanol-Utilizing Pathway.
    Wang K; Liu X; Hu KKY; Haritos VS
    ACS Synth Biol; 2024 Mar; 13(3):888-900. PubMed ID: 38359048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome.
    Helfrich EJN; Vogel CM; Ueoka R; Schäfer M; Ryffel F; Müller DB; Probst S; Kreuzer M; Piel J; Vorholt JA
    Nat Microbiol; 2018 Aug; 3(8):909-919. PubMed ID: 30038309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance.
    Wang T; Guan C; Guo J; Liu B; Wu Y; Xie Z; Zhang C; Xing XH
    Nat Commun; 2018 Jun; 9(1):2475. PubMed ID: 29946130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of D-glucaric acid from sucrose with routed carbon distribution in metabolically engineered Escherichia coli.
    Qu YN; Yan HJ; Guo Q; Li JL; Ruan YC; Yue XZ; Zheng WX; Tan TW; Fan LH
    Metab Eng; 2018 May; 47():393-400. PubMed ID: 29715517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High mutation rates limit evolutionary adaptation in Escherichia coli.
    Sprouffske K; Aguilar-Rodríguez J; Sniegowski P; Wagner A
    PLoS Genet; 2018 Apr; 14(4):e1007324. PubMed ID: 29702649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.
    Dilucca M; Cimini G; Giansanti A
    Gene; 2018 Jul; 663():178-188. PubMed ID: 29678658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation.
    Rohlhill J; Gerald Har JR; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2020 Jan; 57():247-255. PubMed ID: 31881281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol.
    Chen FY; Jung HW; Tsuei CY; Liao JC
    Cell; 2020 Aug; 182(4):933-946.e14. PubMed ID: 32780992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon.
    Har JRG; Agee A; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):869-876. PubMed ID: 33404828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic methylotrophic
    Reiter MA; Bradley T; Büchel LA; Keller P; Hegedis E; Gassler T; Vorholt JA
    Nat Catal; 2024; 7(5):560-573. PubMed ID: 38828428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single carbon metabolism - A new paradigm for microbial bioprocesses?
    Baumschabl M; Ata Ö; Mattanovich D
    Synth Syst Biotechnol; 2024 Jun; 9(2):322-329. PubMed ID: 38545459
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.