These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 29667258)
41. Game of Frontier Orbitals: A View on the Rational Design of Novel Charge-Transfer Materials. Ivanov MV; Reid SA; Rathore R J Phys Chem Lett; 2018 Jul; 9(14):3978-3986. PubMed ID: 29952570 [TBL] [Abstract][Full Text] [Related]
42. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces. Subotnik JE; Sodt A; Head-Gordon M J Chem Phys; 2008 Jan; 128(3):034103. PubMed ID: 18205484 [TBL] [Abstract][Full Text] [Related]
43. On the paucity of molecular actinide complexes with unsupported metal-metal bonds: a comparative investigation of the electronic structure and metal-metal bonding in U2X6 (X = Cl, F, OH, NH2, CH3) complexes and d-block analogues. Cavigliasso G; Kaltsoyannis N Inorg Chem; 2006 Aug; 45(17):6828-39. PubMed ID: 16903739 [TBL] [Abstract][Full Text] [Related]
44. New Titanium Borylimido Compounds: Synthesis, Structure, and Bonding. Clough BA; Mellino S; Protchenko AV; Slusarczyk M; Stevenson LC; Blake MP; Xie B; Clot E; Mountford P Inorg Chem; 2017 Sep; 56(17):10794-10814. PubMed ID: 28836774 [TBL] [Abstract][Full Text] [Related]
46. Understanding the influence of terminal ligands on the electronic structure and bonding nature in [Re6(μ3-Q8)](2+) clusters. Rabanal-León WA; Murillo-López JA; Páez-Hernández D; Arratia-Pérez R J Phys Chem A; 2014 Nov; 118(46):11083-9. PubMed ID: 25347816 [TBL] [Abstract][Full Text] [Related]
47. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. Brovarets' OO; Yurenko YP; Hovorun DM J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732 [TBL] [Abstract][Full Text] [Related]
48. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules. Usharani D; Janardanan D; Li C; Shaik S Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564 [TBL] [Abstract][Full Text] [Related]
49. A new look at the ylidic bond in phosphorus ylides and related compounds: energy decomposition analysis combined with a domain-averaged fermi hole analysis. Calhorda MJ; Krapp A; Frenking G J Phys Chem A; 2007 Apr; 111(15):2859-69. PubMed ID: 17388399 [TBL] [Abstract][Full Text] [Related]
50. Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. Pruitt SR; Steinmann C J Phys Chem A; 2017 Mar; 121(8):1797-1807. PubMed ID: 28177633 [TBL] [Abstract][Full Text] [Related]
51. A comparative study on vibrational, conformational and electronic structure of 2-chloro-4-methyl-3-nitropyridine and 2-chloro-6-methylpyridine. Arjunan V; Saravanan I; Marchewka MK; Mohan S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():305-17. PubMed ID: 22446780 [TBL] [Abstract][Full Text] [Related]
52. Complexes of 4-substituted phenolates with HF and HCN: energy decomposition and electronic structure analyses of hydrogen bonding. Szatyłowicz H; Krygowski TM; Guerra CF; Bickelhaupt FM J Comput Chem; 2013 Mar; 34(8):696-705. PubMed ID: 23175468 [TBL] [Abstract][Full Text] [Related]
53. Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions. Heifetz A; Aldeghi M; Chudyk EI; Fedorov DG; Bodkin MJ; Biggin PC Biochem Soc Trans; 2016 Apr; 44(2):574-81. PubMed ID: 27068972 [TBL] [Abstract][Full Text] [Related]
54. Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals. Horn PR; Sundstrom EJ; Baker TA; Head-Gordon M J Chem Phys; 2013 Apr; 138(13):134119. PubMed ID: 23574220 [TBL] [Abstract][Full Text] [Related]
55. Developing paradigms of chemical bonding: adaptive natural density partitioning. Zubarev DY; Boldyrev AI Phys Chem Chem Phys; 2008 Sep; 10(34):5207-17. PubMed ID: 18728862 [TBL] [Abstract][Full Text] [Related]
56. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
57. Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. Kobori T; Sodeyama K; Otsuka T; Tateyama Y; Tsuneyuki S J Chem Phys; 2013 Sep; 139(9):094113. PubMed ID: 24028108 [TBL] [Abstract][Full Text] [Related]
58. Terminally coordinated AsS and PS ligands. Balázs G; Green JC; Scheer M Chemistry; 2006 Nov; 12(33):8603-8. PubMed ID: 16953507 [TBL] [Abstract][Full Text] [Related]
59. Spectroscopic, electronic structure and natural bond orbital analysis of o-fluoronitrobenzene and p-fluoronitrobenzene: a comparative study. Arjunan V; Govindaraja ST; Sakiladevi S; Kalaivani M; Mohan S Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):196-209. PubMed ID: 21993258 [TBL] [Abstract][Full Text] [Related]
60. The nature of resonance-assisted hydrogen bonds: a quantum chemical topology perspective. Guevara-Vela JM; Romero-Montalvo E; Costales A; Pendás ÁM; Rocha-Rinza T Phys Chem Chem Phys; 2016 Oct; 18(38):26383-90. PubMed ID: 27435637 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]