These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29667363)

  • 21. Highly Crystalized Co
    Gao S; Tang Y; Gao Y; Liu L; Zhao H; Li X; Wang X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7006-7013. PubMed ID: 30688434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries.
    Jin T; Wang Y; Hui Z; Qie B; Li A; Paley D; Xu B; Wang X; Chitu A; Zhai H; Gong T; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(19):17333-17340. PubMed ID: 31013429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox.
    Giordani V; Tozier D; Uddin J; Tan H; Gallant BM; McCloskey BD; Greer JR; Chase GV; Addison D
    Nat Chem; 2019 Dec; 11(12):1133-1138. PubMed ID: 31591507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selection of a rechargeable internal back-up battery for a totally implantable artificial heart.
    Honda H; Shiba K; Shu E; Koshiji K; Murai T; Nakamura T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1999; 45(4):339-43. PubMed ID: 10445742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Core-Shell Fe
    Wan H; Mwizerwa JP; Qi X; Liu X; Xu X; Li H; Hu YS; Yao X
    ACS Nano; 2018 Mar; 12(3):2809-2817. PubMed ID: 29518320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries.
    Venkata Narayanan NS; Ashokraj BV; Sampath S
    J Colloid Interface Sci; 2010 Feb; 342(2):505-12. PubMed ID: 19914628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte.
    Inoishi A; Ida S; Uratani S; Okano T; Ishihara T
    Phys Chem Chem Phys; 2012 Oct; 14(37):12818-22. PubMed ID: 22880205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Flexible Rechargeable Zinc-Air Battery with Excellent Low-Temperature Adaptability.
    Pei Z; Yuan Z; Wang C; Zhao S; Fei J; Wei L; Chen J; Wang C; Qi R; Liu Z; Chen Y
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4793-4799. PubMed ID: 31916361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchically Designed 3D Holey C
    Shinde SS; Lee CH; Yu JY; Kim DH; Lee SU; Lee JH
    ACS Nano; 2018 Jan; 12(1):596-608. PubMed ID: 29262251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton-Mediated and Ir-Catalyzed Iron/Iron-Oxide Redox Kinetics for Enhanced Rechargeability and Durability of Solid Oxide Iron-Air Battery.
    Tang Q; Morey C; Zhang Y; Xu N; Sun S; Huang K
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203768. PubMed ID: 36031393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.
    Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.
    Lee DU; Park HW; Park MG; Ismayilov V; Chen Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):902-10. PubMed ID: 25494945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.
    Yang C; Suo L; Borodin O; Wang F; Sun W; Gao T; Fan X; Hou S; Ma Z; Amine K; Xu K; Wang C
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6197-6202. PubMed ID: 28566497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary batteries with multivalent ions for energy storage.
    Xu C; Chen Y; Shi S; Li J; Kang F; Su D
    Sci Rep; 2015 Sep; 5():14120. PubMed ID: 26365600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte.
    Meng J; Hong X; Xiao Z; Xu L; Zhu L; Jia Y; Liu F; Mai L; Pang Q
    Nat Commun; 2024 Jan; 15(1):596. PubMed ID: 38238327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.