BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29667445)

  • 1. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.
    Jiang L; Liang X; Liu G; Zhou Y; Ye X; Chen X; Miao Q; Gao L; Zhang X; Mei L
    Drug Deliv; 2018 Nov; 25(1):985-994. PubMed ID: 29667445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy.
    Zhang J; Zhang X; Liu G; Chang D; Liang X; Zhu X; Tao W; Mei L
    Theranostics; 2016; 6(12):2099-2113. PubMed ID: 27698943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-responsive nanocapsules for intracellular protein delivery.
    Zhao M; Biswas A; Hu B; Joo KI; Wang P; Gu Z; Tang Y
    Biomaterials; 2011 Aug; 32(22):5223-30. PubMed ID: 21514660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis.
    Hamelers IH; Staffhorst RW; Voortman J; de Kruijff B; Reedijk J; van Bergen en Henegouwen PM; de Kroon AI
    Clin Cancer Res; 2009 Feb; 15(4):1259-68. PubMed ID: 19228729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosomal escape enhancing compounds facilitate functional delivery of extracellular vesicle cargo.
    Heath N; Osteikoetxea X; de Oliveria TM; Lázaro-Ibáñez E; Shatnyeva O; Schindler C; Tigue N; Mayr LM; Dekker N; Overman R; Davies R
    Nanomedicine (Lond); 2019 Nov; 14(21):2799-2814. PubMed ID: 31724479
    [No Abstract]   [Full Text] [Related]  

  • 6. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endolysosomal targeting of a clinical chlorin photosensitiser for light-triggered delivery of nano-sized medicines.
    Yaghini E; Dondi R; Tewari KM; Loizidou M; Eggleston IM; MacRobert AJ
    Sci Rep; 2017 Jul; 7(1):6059. PubMed ID: 28729656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.
    Lönn P; Kacsinta AD; Cui XS; Hamil AS; Kaulich M; Gogoi K; Dowdy SF
    Sci Rep; 2016 Sep; 6():32301. PubMed ID: 27604151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylcholine-Based Stealthy Nanocapsules Decorating TPGS for Combatting Multi-Drug-Resistant Cancer.
    Liu G; Tsai HI; Zeng X; Cheng W; Jiang L; Chen H; Zhang X; Zhang J; Mei L
    ACS Biomater Sci Eng; 2018 May; 4(5):1679-1686. PubMed ID: 33445324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal escape: a bottleneck in intracellular delivery.
    Shete HK; Prabhu RH; Patravale VB
    J Nanosci Nanotechnol; 2014 Jan; 14(1):460-74. PubMed ID: 24730275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZFYVE26/SPASTIZIN and SPG11/SPATACSIN mutations in hereditary spastic paraplegia types AR-SPG15 and AR-SPG11 have different effects on autophagy and endocytosis.
    Vantaggiato C; Panzeri E; Castelli M; Citterio A; Arnoldi A; Santorelli FM; Liguori R; Scarlato M; Musumeci O; Toscano A; Clementi E; Bassi MT
    Autophagy; 2019 Jan; 15(1):34-57. PubMed ID: 30081747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in transgene expression by pluronic L64-mediated endosomal/lysosomal escape through its membrane-disturbing action.
    Chen J; Luo J; Zhao Y; Pu L; Lu X; Gao R; Wang G; Gu Z
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7282-93. PubMed ID: 25786540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.
    Panyam J; Zhou WZ; Prabha S; Sahoo SK; Labhasetwar V
    FASEB J; 2002 Aug; 16(10):1217-26. PubMed ID: 12153989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular fate of octaarginine-modified liposomes in polarized MDCK cells.
    Fujiwara T; Akita H; Harashima H
    Int J Pharm; 2010 Feb; 386(1-2):122-30. PubMed ID: 19922779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular trafficking of bio-nanocapsule-liposome complex: Identification of fusogenic activity in the pre-S1 region of hepatitis B virus surface antigen L protein.
    Somiya M; Sasaki Y; Matsuzaki T; Liu Q; Iijima M; Yoshimoto N; Niimi T; Maturana AD; Kuroda S
    J Control Release; 2015 Aug; 212():10-8. PubMed ID: 26074149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular fates of cell-penetrating block copolypeptide vesicles.
    Sun VZ; Li Z; Deming TJ; Kamei DT
    Biomacromolecules; 2011 Jan; 12(1):10-3. PubMed ID: 21128599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability.
    Paillard A; Hindré F; Vignes-Colombeix C; Benoit JP; Garcion E
    Biomaterials; 2010 Oct; 31(29):7542-54. PubMed ID: 20630585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of cRGD-modified reduction-sensitive nanocapsule via Pickering emulsion route to facilitate tumor-targeted delivery.
    Shang X; Liu Q; Qin T; Xu X; Sun H; Liu M; Zhu H
    Int J Nanomedicine; 2019; 14():3361-3373. PubMed ID: 31190797
    [No Abstract]   [Full Text] [Related]  

  • 20. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems.
    Fortuni B; Inose T; Ricci M; Fujita Y; Van Zundert I; Masuhara A; Fron E; Mizuno H; Latterini L; Rocha S; Uji-I H
    Sci Rep; 2019 Feb; 9(1):2666. PubMed ID: 30804375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.