These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29667686)
1. Rheological characterization of dynamic remodeling of the pericellular region by human mesenchymal stem cell-secreted enzymes in well-defined synthetic hydrogel scaffolds. Daviran M; Longwill SM; Casella JF; Schultz KM Soft Matter; 2018 Apr; 14(16):3078-3089. PubMed ID: 29667686 [TBL] [Abstract][Full Text] [Related]
2. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness. Daviran M; Catalano J; Schultz KM Biomacromolecules; 2020 Aug; 21(8):3056-3068. PubMed ID: 32559386 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds. Daviran M; Schultz KM Rheol Acta; 2019 Aug; 58(8):421-437. PubMed ID: 32773889 [TBL] [Abstract][Full Text] [Related]
4. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology. McGlynn JA; Druggan KJ; Croland KJ; Schultz KM Acta Biomater; 2021 Feb; 121():405-417. PubMed ID: 33278674 [TBL] [Abstract][Full Text] [Related]
6. Role of Cell-Mediated Enzymatic Degradation and Cytoskeletal Tension on Dynamic Changes in the Rheology of the Pericellular Region Prior to Human Mesenchymal Stem Cell Motility. Daviran M; Caram HS; Schultz KM ACS Biomater Sci Eng; 2018 Feb; 4(2):468-472. PubMed ID: 29862316 [TBL] [Abstract][Full Text] [Related]
7. Measuring the Effects of Cytokines on the Modification of Pericellular Rheology by Human Mesenchymal Stem Cells. Daviran M; McGlynn JA; Catalano JA; Knudsen HE; Druggan KJ; Croland KJ; Stratton A; Schultz KM ACS Biomater Sci Eng; 2021 Dec; 7(12):5762-5774. PubMed ID: 34752080 [TBL] [Abstract][Full Text] [Related]
8. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Schultz KM; Kyburz KA; Anseth KS Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3757-64. PubMed ID: 26150508 [TBL] [Abstract][Full Text] [Related]
9. A Rheological Study on the Effect of Tethering Pro- and Anti-Inflammatory Cytokines into Hydrogels on Human Mesenchymal Stem Cell Migration, Degradation, and Morphology. O'Shea TC; Croland KJ; Salem A; Urbanski R; Schultz KM Biomacromolecules; 2024 Aug; 25(8):5121-5137. PubMed ID: 38961715 [TBL] [Abstract][Full Text] [Related]
10. Measuring human mesenchymal stem cell remodeling in hydrogels with a step-change in elastic modulus. McGlynn JA; Schultz KM Soft Matter; 2022 Aug; 18(34):6340-6352. PubMed ID: 35968833 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the Kinetics and Mechanism of Degradation of Human Mesenchymal Stem Cell-Laden Poly(ethylene glycol) Hydrogels. Mazzeo MS; Chai T; Daviran M; Schultz KM ACS Appl Bio Mater; 2019 Jan; 2(1):81-92. PubMed ID: 31555760 [TBL] [Abstract][Full Text] [Related]
12. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels. Xin S; Gregory CA; Alge DL Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899 [TBL] [Abstract][Full Text] [Related]
13. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085 [TBL] [Abstract][Full Text] [Related]
14. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Anderson SB; Lin CC; Kuntzler DV; Anseth KS Biomaterials; 2011 May; 32(14):3564-74. PubMed ID: 21334063 [TBL] [Abstract][Full Text] [Related]
15. Design and evaluation of mesenchymal stem cells seeded chitosan/glycosaminoglycans quaternary hydrogel scaffolds for wound healing applications. Soriano-Ruiz JL; Gálvez-Martín P; López-Ruiz E; Suñer-Carbó J; Calpena-Campmany AC; Marchal JA; Clares-Naveros B Int J Pharm; 2019 Oct; 570():118632. PubMed ID: 31437562 [TBL] [Abstract][Full Text] [Related]
16. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783 [TBL] [Abstract][Full Text] [Related]
17. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Leight JL; Alge DL; Maier AJ; Anseth KS Biomaterials; 2013 Oct; 34(30):7344-52. PubMed ID: 23830581 [TBL] [Abstract][Full Text] [Related]
18. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. Bahney CS; Hsu CW; Yoo JU; West JL; Johnstone B FASEB J; 2011 May; 25(5):1486-96. PubMed ID: 21282205 [TBL] [Abstract][Full Text] [Related]
19. Cell-mediated degradation regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels. Feng Q; Zhu M; Wei K; Bian L PLoS One; 2014; 9(6):e99587. PubMed ID: 24911871 [TBL] [Abstract][Full Text] [Related]
20. Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems. Hafner J; Grijalva D; Ludwig-Husemann A; Bertels S; Bensinger L; Raic A; Gebauer J; Oelschlaeger C; Bastmeyer M; Bieback K; Lee-Thedieck C; Willenbacher N Acta Biomater; 2020 Jul; 111():254-266. PubMed ID: 32434077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]