These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29667823)

  • 41. Yeast-based assays for screening 11β-HSD1 inhibitors.
    Vanella R; Callari R; Weston A; Heider H; Schwab MS; Kübler E
    Microb Cell Fact; 2016 Mar; 15():52. PubMed ID: 26980090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-throughput assays for promiscuous inhibitors.
    Feng BY; Shelat A; Doman TN; Guy RK; Shoichet BK
    Nat Chem Biol; 2005 Aug; 1(3):146-8. PubMed ID: 16408018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pharmacophore modelling and virtual screening for identification of new Aurora-A kinase inhibitors.
    Deng XQ; Wang HY; Zhao YL; Xiang ML; Jiang PD; Cao ZX; Zheng YZ; Luo SD; Yu LT; Wei YQ; Yang SY
    Chem Biol Drug Des; 2008 Jun; 71(6):533-9. PubMed ID: 18410307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening.
    Sato T; Honma T; Yokoyama S
    J Chem Inf Model; 2010 Jan; 50(1):170-85. PubMed ID: 20038188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit.
    Schuck BW; MacArthur R; Inglese J
    Curr Protoc Neurosci; 2017 Apr; 79():5.32.1-5.32.27. PubMed ID: 28398644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using machine learning methods to predict experimental high-throughput screening data.
    Mballo C; Makarenkov V
    Comb Chem High Throughput Screen; 2010 Jun; 13(5):430-41. PubMed ID: 20236062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endogenous Locus Reporter Assays.
    Liu Y; Hermes J; Li J; Tudor M
    Methods Mol Biol; 2018; 1755():163-177. PubMed ID: 29671270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.
    Lather A; Sharma S; Khatkar A
    Comb Chem High Throughput Screen; 2018; 21(3):182-193. PubMed ID: 29600755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays.
    Zhang XD
    J Biomol Screen; 2007 Aug; 12(5):645-55. PubMed ID: 17517904
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A High-Throughput Screen for Inhibitors of the Hsp90-Chaperone Machine.
    Davenport J; Galam L; Matts RL
    Methods Mol Biol; 2018; 1709():87-96. PubMed ID: 29177653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. HTS followed by NMR based counterscreening. Discovery and optimization of pyrimidones as reversible and competitive inhibitors of xanthine oxidase.
    Evenäs J; Edfeldt F; Lepistö M; Svitacheva N; Synnergren A; Lundquist B; Gränse M; Rönnholm A; Varga M; Wright J; Wei M; Yue S; Wang J; Li C; Li X; Chen G; Liao Y; Lv G; Tjörnebo A; Narjes F
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1315-21. PubMed ID: 24508129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lead discovery for mammalian elongation of long chain fatty acids family 6 using a combination of high-throughput fluorescent-based assay and RapidFire mass spectrometry assay.
    Takamiya M; Sakurai M; Teranishi F; Ikeda T; Kamiyama T; Asai A
    Biochem Biophys Res Commun; 2016 Nov; 480(4):721-726. PubMed ID: 27793673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of M. tuberculosis thioredoxin reductase inhibitors based on high-throughput docking using constraints.
    Koch O; Jäger T; Heller K; Khandavalli PC; Pretzel J; Becker K; Flohé L; Selzer PM
    J Med Chem; 2013 Jun; 56(12):4849-59. PubMed ID: 23676086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [High-throughput screening of human soluble epoxide hydrolase inhibitors].
    Wang SB; Guo J; Yu XM; Du GH
    Yao Xue Xue Bao; 2010 Nov; 45(11):1367-72. PubMed ID: 21361036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Potent Cell-Permeable and Impermeable NanoLuc Luciferase Inhibitors.
    Walker JR; Hall MP; Zimprich CA; Robers MB; Duellman SJ; Machleidt T; Rodriguez J; Zhou W
    ACS Chem Biol; 2017 Apr; 12(4):1028-1037. PubMed ID: 28195704
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Accurate Filters to Flag Frequent Hitters in AlphaScreen Assays by Suggesting their Mechanism.
    Ghosh D; Koch U; Hadian K; Sattler M; Tetko IV
    Mol Inform; 2022 Mar; 41(3):e2100151. PubMed ID: 34676998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors.
    Buendia R; Kogej T; Engkvist O; Carlsson L; Linusson H; Johansson U; Toccaceli P; Ahlberg E
    J Chem Inf Model; 2019 Mar; 59(3):1230-1237. PubMed ID: 30726080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving Screening Efficiency through Iterative Screening Using Docking and Conformal Prediction.
    Svensson F; Norinder U; Bender A
    J Chem Inf Model; 2017 Mar; 57(3):439-444. PubMed ID: 28195474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS.
    Dahlin JL; Nissink JW; Strasser JM; Francis S; Higgins L; Zhou H; Zhang Z; Walters MA
    J Med Chem; 2015 Mar; 58(5):2091-113. PubMed ID: 25634295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.