BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29667866)

  • 1. Assessment and comparison of PHCs removal from three types of soils (sand, silt loam and clay) using supercritical fluid extraction.
    Meskar M; Sartaj M; Infante Sedano JA
    Environ Technol; 2019 Sep; 40(23):3040-3053. PubMed ID: 29667866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field survey of Canadian background soils: Implications for a new mathematical gas chromatography-flame ionization detection approach for resolving false detections of petroleum hydrocarbons in clean soils.
    Kelly-Hooper F; Farwell AJ; Pike G; Kennedy J; Wang Z; Grunsky EC; Dixon DG
    Environ Toxicol Chem; 2014 Aug; 33(8):1754-60. PubMed ID: 24648240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils.
    Li J; Song X; Hu G; Thring RW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(11):1378-89. PubMed ID: 23705614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of petroleum hydrocarbons from soil using supercritical argon.
    Liang S; Tilotta DC
    Anal Chem; 1998 Feb; 70(3):616-22. PubMed ID: 21644760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of soil type on the bioremediation of petroleum contaminated soils.
    Haghollahi A; Fazaelipoor MH; Schaffie M
    J Environ Manage; 2016 Sep; 180():197-201. PubMed ID: 27233045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment.
    Kelly-Hooper F; Farwell AJ; Pike G; Kennedy J; Wang Z; Grunsky EC; Dixon DG
    Environ Toxicol Chem; 2013 Oct; 32(10):2197-206. PubMed ID: 23703885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guidelines for surfactant selection to treat petroleum hydrocarbon-contaminated soils.
    Ritoré E; Coquelet B; Arnaiz C; Morillo J; Usero J
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7639-7651. PubMed ID: 34480306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Case Study of Petroleum Degradation in Different Soil Textural Classes.
    Kogbara RB; Ayotamuno JM; Worlu DC; Fubara-Manuel I
    Recent Pat Biotechnol; 2016; 9(2):108-15. PubMed ID: 26555722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling to assess the effect of soil texture on transport and attenuation of petroleum hydrocarbons in unsaturated zone.
    Srivastava A; Valsala R
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46132-46146. PubMed ID: 36710315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil.
    Adam G; Gamoh K; Morris DG; Duncan H
    Sci Total Environ; 2002 Mar; 286(1-3):15-25. PubMed ID: 11886090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of contaminated soils using supercritical fluid extraction: a review (1994-2004).
    Saldaña MD; Nagpal V; Guigard SE
    Environ Technol; 2005 Sep; 26(9):1013-32. PubMed ID: 16196410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-size-based elution of petroleum hydrocarbon contaminated soil by surfactant mixture.
    Zhang T; Cheng J; Tan H; Luo S; Liu Y
    J Environ Manage; 2022 Jan; 302(Pt A):113983. PubMed ID: 34710765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site.
    Lu Z; Zeng F; Xue N; Li F
    Sci Total Environ; 2012 Sep; 433():50-7. PubMed ID: 22766427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.
    Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z
    J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils.
    Olasanmi IO; Thring RW
    J Adv Res; 2020 Jan; 21():79-90. PubMed ID: 32071776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlaboratory evaluation of an off-line supercritical fluid extraction/infrared spectrometric method for determination of petroleum hydrocarbons in solid matrixes.
    Lopez-Avila V; Young R; Kim R; Beckert WF
    J AOAC Int; 1993; 76(3):555-614. PubMed ID: 8318848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of biosolids during the phytoremediation of hydrocarbon-contaminated soil.
    Dickinson SJ; Rutherford PM
    J Environ Qual; 2006; 35(4):982-91. PubMed ID: 16738382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curve-fitting techniques improve the mid-infrared analysis of soil organic carbon: a case study for Brookston clay loam particle-size fractions.
    Fan R; Yang X; Drury CF; Zhang Z
    Sci Rep; 2018 Aug; 8(1):12174. PubMed ID: 30111781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of supercritical fluid extraction parameters and clay properties on the efficiency of phenanthrene extraction.
    Elektorowicz M; El-Sadi H; Lin J; Ayadat T
    J Colloid Interface Sci; 2007 May; 309(2):445-52. PubMed ID: 17306283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soils.
    Siciliano SD; Schafer AN; Forgeron MA; Snape I
    Environ Sci Technol; 2008 Nov; 42(22):8324-9. PubMed ID: 19068813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.