These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29667934)

  • 41. The contribution of the human PPC to the orienting of visuospatial attention during smooth pursuit.
    Drew AS; van Donkelaar P
    Exp Brain Res; 2007 May; 179(1):65-73. PubMed ID: 17221223
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electroencephalographic activity associated with shifts of visuospatial attention.
    Yamaguchi S; Tsuchiya H; Kobayashi S
    Brain; 1994 Jun; 117 ( Pt 3)():553-62. PubMed ID: 8032865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing.
    He X; Humphreys G; Fan S; Chen L; Han S
    Brain Res; 2008 Dec; 1245():116-25. PubMed ID: 18955038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visuospatial attention in myopia.
    Turatto M; Facoetti A; Serra G; Benso F; Angi M; Umiltà C; Mascetti GG
    Brain Res Cogn Brain Res; 1999 Oct; 8(3):369-72. PubMed ID: 10556613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An independent brain-computer interface using covert non-spatial visual selective attention.
    Zhang D; Maye A; Gao X; Hong B; Engel AK; Gao S
    J Neural Eng; 2010 Feb; 7(1):16010. PubMed ID: 20083864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders.
    Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M
    J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orienting visuospatial attention generates manual reaction time asymmetries in target detection and pointing.
    Barthélémy S; Boulinguez P
    Behav Brain Res; 2002 Jun; 133(1):109-16. PubMed ID: 12048178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. When and where perceptual load interacts with voluntary visuospatial attention: an event-related potential and dipole modeling study.
    Fu S; Zinni M; Squire PN; Kumar R; Caggiano DM; Parasuraman R
    Neuroimage; 2008 Feb; 39(3):1345-55. PubMed ID: 18006335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extracting duration information in a picture category decoding task using hidden Markov Models.
    Pfeiffer T; Heinze N; Frysch R; Deouell LY; Schoenfeld MA; Knight RT; Rose G
    J Neural Eng; 2016 Apr; 13(2):026010. PubMed ID: 26859831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.
    Katus T; Andersen SK; Müller MM
    Cereb Cortex; 2014 Mar; 24(3):707-18. PubMed ID: 23172773
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex slow potential generators in a simplified attention paradigm.
    Basile LF; Brunetti EP; Pereira JF; Ballester G; Amaro E; Anghinah R; Ribeiro P; Piedade R; Gattaz WF
    Int J Psychophysiol; 2006 Aug; 61(2):149-57. PubMed ID: 16313987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison study of visually stimulated brain-computer and eye-tracking interfaces.
    Suefusa K; Tanaka T
    J Neural Eng; 2017 Jun; 14(3):036009. PubMed ID: 28198356
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial Inhibition of Return promotes changes in response-related mu and beta oscillatory patterns.
    Amenedo E; Gutiérrez-Domínguez FJ; Darriba Á; Pazo-Álvarez P
    Neuroscience; 2015 Dec; 310():616-28. PubMed ID: 26456119
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.
    Horschig JM; Oosterheert W; Oostenveld R; Jensen O
    Brain Topogr; 2015 Nov; 28(6):852-64. PubMed ID: 25388661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing.
    Roijendijk L; Farquhar J; van Gerven M; Jensen O; Gielen S
    PLoS One; 2013; 8(12):e80489. PubMed ID: 24312477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Location and features of instructive spatial cues do not influence the time course of covert shifts of visual spatial attention.
    Müller MM
    Biol Psychol; 2008 Mar; 77(3):292-303. PubMed ID: 18083290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time decoding of brain responses to visuospatial attention using 7T fMRI.
    Andersson P; Pluim JP; Siero JC; Klein S; Viergever MA; Ramsey NF
    PLoS One; 2011; 6(11):e27638. PubMed ID: 22110702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Covert orienting of visuospatial attention in children with developmental coordination disorder.
    Wilson PH; Maruff P; McKenzie BE
    Dev Med Child Neurol; 1997 Nov; 39(11):736-45. PubMed ID: 9393887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.