These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29667938)

  • 1. Suggested design of gold-nanoobjects-based terahertz radiation source for biomedical research.
    Postnikov AV; Moldosanov KA
    Nanotechnology; 2018 Jul; 29(28):285704. PubMed ID: 29667938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study.
    Moldosanov K; Postnikov A
    Beilstein J Nanotechnol; 2016; 7():983-9. PubMed ID: 27547615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation.
    Lin Y; McMahon SJ; Scarpelli M; Paganetti H; Schuemann J
    Phys Med Biol; 2014 Dec; 59(24):7675-89. PubMed ID: 25415297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization.
    Lechtman E; Pignol JP
    Sci Rep; 2017 Oct; 7(1):13268. PubMed ID: 29038517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric consequences of gold nanoparticle clustering during photon irradiation.
    Kirkby C; Koger B; Suchowerska N; McKenzie DR
    Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation, transport, and detection of linear accelerator based femtosecond-terahertz pulses.
    Park J; Kim C; Lee J; Yim C; Kim CH; Lee J; Jung S; Ryu J; Kang HS; Joo T
    Rev Sci Instrum; 2011 Jan; 82(1):013305. PubMed ID: 21280823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
    Wu Z; Fisher AS; Goodfellow J; Fuchs M; Daranciang D; Hogan M; Loos H; Lindenberg A
    Rev Sci Instrum; 2013 Feb; 84(2):022701. PubMed ID: 23464183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.
    Leung MK; Chow JC; Chithrani BD; Lee MJ; Oms B; Jaffray DA
    Med Phys; 2011 Feb; 38(2):624-31. PubMed ID: 21452700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.
    Lin Y; Paganetti H; McMahon SJ; Schuemann J
    Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-terahertz-wave molecular imaging system for biomedical applications.
    Zhang R; Zhang L; Wu T; Wang R; Zuo S; Wu D; Zhang C; Zhang J; Fang J
    J Biomed Opt; 2016 Jul; 21(7):76006. PubMed ID: 27405265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses.
    Fu Z; Yamaguchi M
    Sci Rep; 2016 Dec; 6():38264. PubMed ID: 27905563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyper-Rayleigh scattering from gold nanoparticles: effect of size and shape.
    Das K; Uppal A; Saini RK; Varshney GK; Mondal P; Gupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():398-402. PubMed ID: 24682054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.
    Byrne HL; Gholami Y; Kuncic Z
    Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.