BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29668264)

  • 1. The Effects of Phosphonate-Based Scale Inhibitor on Brine-Biotite Interactions under Subsurface Conditions.
    Zhang L; Kim D; Jun YS
    Environ Sci Technol; 2018 May; 52(10):6042-6049. PubMed ID: 29668264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Fe-Bearing Phyllosilicates in DTPMP Degradation under High-Temperature and High-Pressure Conditions.
    Zhang L; Jun YS
    Environ Sci Technol; 2018 Aug; 52(16):9522-9530. PubMed ID: 30048125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sulfate on biotite interfacial reactions under high temperature and high CO
    Zhang L; Zhu Y; Wu X; Jun YS
    Phys Chem Chem Phys; 2019 Mar; 21(12):6381-6390. PubMed ID: 30838369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phosphate on biotite dissolution and secondary precipitation under conditions relevant to engineered subsurface processes.
    Zhang L; Kim D; Kim Y; Wan J; Jun YS
    Phys Chem Chem Phys; 2017 Nov; 19(44):29895-29904. PubMed ID: 29086792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotite dissolution in brine at varied temperatures and CO2 pressures: its activation energy and potential CO2 intercalation.
    Hu Y; Jun YS
    Langmuir; 2012 Oct; 28(41):14633-41. PubMed ID: 22989382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2011 Jul; 45(14):6175-80. PubMed ID: 21696218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive Reactivities at Biotite Edge and Basal Planes in the Presence of Organic Ligands: Implications for Organic-Rich Geologic CO2 Sequestration.
    Zhang L; Jun YS
    Environ Sci Technol; 2015 Aug; 49(16):10217-25. PubMed ID: 26171995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Na
    Min Y; Kim D; Jun YS
    Environ Sci Technol; 2018 Nov; 52(22):13638-13646. PubMed ID: 30346737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic understanding of calcium-phosphonate solid dissolution and scale inhibitor return behavior in oilfield reservoir: formation of middle phase.
    Zhang P; Shen D; Ruan G; Kan AT; Tomson MB
    Phys Chem Chem Phys; 2016 Aug; 18(31):21458-68. PubMed ID: 27426410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct biotite-weathering activities of Arthrobacter pascens F74 under different contact conditions.
    Sun Y; Wang Y; Li L; Sun L; He L; Sheng X
    J Basic Microbiol; 2020 Apr; 60(4):362-371. PubMed ID: 31840843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between Biotite and the Mineral-Weathering Bacterium
    Wang YL; Sun LJ; Xian CM; Kou FL; Zhu Y; He LY; Sheng XF
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bacterial siderophore on cesium dissolution from biotite.
    Kimura T; Fukutani S; Ikegami M; Sakamoto F; Kozai N; Grambow B; Yoneda M
    Chemosphere; 2021 Aug; 276():130121. PubMed ID: 33684861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.
    Fukushi K; Hasegawa Y; Maeda K; Aoi Y; Tamura A; Arai S; Yamamoto Y; Aosai D; Mizuno T
    Environ Sci Technol; 2013 Nov; 47(22):12811-8. PubMed ID: 24171426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of arsenite and arsenate onto muscovite and biotite mica.
    Chakraborty S; Wolthers M; Chatterjee D; Charlet L
    J Colloid Interface Sci; 2007 May; 309(2):392-401. PubMed ID: 17292378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering.
    Grant MR; Tymon LS; Helms GL; Thomashow LS; Kent Keller C; Harsh JB
    Geobiology; 2016 Nov; 14(6):588-598. PubMed ID: 27384343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eco-friendly natural mineral biotite as a cesium adsorbent: Utilizing low-concentration acid and hydrogen peroxide.
    Kwon S; Seoung D; Jung E; Park J; Lim J; Park B; Cho Y; Kim P; Kim H; Lee Y
    Chemosphere; 2024 Apr; 353():141510. PubMed ID: 38401861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite.
    Brookshaw DR; Pattrick RA; Bots P; Law GT; Lloyd JR; Mosselmans JF; Vaughan DJ; Dardenne K; Morris K
    Environ Sci Technol; 2015 Nov; 49(22):13139-48. PubMed ID: 26488884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.
    Jung B; Batchelor B
    Chemosphere; 2007 Jul; 68(7):1254-61. PubMed ID: 17368506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.