BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29668275)

  • 1. Structural Basis for the Specific Cotranslational Incorporation of p-Boronophenylalanine into Biosynthetic Proteins.
    Schiefner A; Nästle L; Landgraf M; Reichert AJ; Skerra A
    Biochemistry; 2018 May; 57(18):2597-2600. PubMed ID: 29668275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation of a system for the co-translational incorporation of a keto amino acid and its application to a tumour-specific Anticalin.
    Reichert AJ; Poxleitner G; Dauner M; Skerra A
    Protein Eng Des Sel; 2015 Dec; 28(12):553-65. PubMed ID: 26405058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria.
    Kowal AK; Kohrer C; RajBhandary UL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2268-73. PubMed ID: 11226228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
    Ozawa K; Loh CT
    Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Robustness Affects the Engineerability of Aminoacyl-tRNA Synthetases for Genetic Code Expansion.
    Grasso KT; Yeo MJR; Hillenbrand CM; Ficaretta ED; Italia JS; Huang RL; Chatterjee A
    Biochemistry; 2021 Feb; 60(7):489-493. PubMed ID: 33560840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing and engineering of a site-specific incorporation of a keto group in uricase.
    Fang Z; Liu Y; Liu J; Sun R; Chen H; Gao X; Yao W
    Chem Biol Drug Des; 2011 Sep; 78(3):353-60. PubMed ID: 21585711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
    Sun R; Zheng H; Fang Z; Yao W
    Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a domain-swapped photoactivatable sfGFP variant provides evidence for GFP folding pathway.
    Kesgin-Schaefer S; Heidemann J; Puchert A; Koelbel K; Yorke BA; Huse N; Pearson AR; Uetrecht C; Tidow H
    FEBS J; 2019 Jun; 286(12):2329-2340. PubMed ID: 30817081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase.
    Turner JM; Graziano J; Spraggon G; Schultz PG
    J Am Chem Soc; 2005 Nov; 127(43):14976-7. PubMed ID: 16248607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new strategy for the site-specific modification of proteins in vivo.
    Zhang Z; Smith BA; Wang L; Brock A; Cho C; Schultz PG
    Biochemistry; 2003 Jun; 42(22):6735-46. PubMed ID: 12779328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Semi-Rationally Engineered Bacterial Pyrrolysyl-tRNA Synthetase Genetically Encodes Phenyl Azide Chemistry.
    Fladischer P; Weingartner A; Blamauer J; Darnhofer B; Birner-Gruenberger R; Kardashliev T; Ruff AJ; Schwaneberg U; Wiltschi B
    Biotechnol J; 2019 Mar; 14(3):e1800125. PubMed ID: 29862654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.
    Chatterjee A; Lajoie MJ; Xiao H; Church GM; Schultz PG
    Chembiochem; 2014 Aug; 15(12):1782-6. PubMed ID: 24867343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemical toolkit for proteins--an expanded genetic code.
    Xie J; Schultz PG
    Nat Rev Mol Cell Biol; 2006 Oct; 7(10):775-82. PubMed ID: 16926858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of single molecular determinants in the fidelity of expanded genetic codes.
    Antonczak AK; Simova Z; Yonemoto IT; Bochtler M; Piasecka A; Czapinska H; Brancale A; Tippmann EM
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1320-5. PubMed ID: 21224416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases.
    Perona JJ; Hadd A
    Biochemistry; 2012 Nov; 51(44):8705-29. PubMed ID: 23075299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.