BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 29668304)

  • 21. An uncertain model-based approach for identifying dynamic protein complexes in uncertain protein-protein interaction networks.
    Zhang Y; Lin H; Yang Z; Wang J; Liu Y
    BMC Genomics; 2017 Oct; 18(Suppl 7):743. PubMed ID: 29513194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving protein function prediction using domain and protein complexes in PPI networks.
    Peng W; Wang J; Cai J; Chen L; Li M; Wu FX
    BMC Syst Biol; 2014 Mar; 8():35. PubMed ID: 24655481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DPCT: A Dynamic Method for Detecting Protein Complexes From TAP-Aware Weighted PPI Network.
    SabziNezhad A; Jalili S
    Front Genet; 2020; 11():567. PubMed ID: 32676097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A supervised protein complex prediction method with network representation learning and gene ontology knowledge.
    Wang X; Zhang Y; Zhou P; Liu X
    BMC Bioinformatics; 2022 Jul; 23(1):300. PubMed ID: 35879648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data.
    Li M; Wu X; Wang J; Pan Y
    BMC Bioinformatics; 2012 May; 13():109. PubMed ID: 22621308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying protein complexes based on multiple topological structures in PPI networks.
    Chen B; Wu FX
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):165-72. PubMed ID: 23974659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C; Theofilatos K; Pegkas A; Likothanassis S; Mavroudi S
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes.
    Yong CH; Wong L
    Biol Direct; 2015 Aug; 10():40. PubMed ID: 26231465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Protein Complexes Based on Core-Attachment Structure and Combination of Centrality Measures and Biological Properties in PPI Weighted Networks.
    Elahi A; Babamir SM
    Protein J; 2020 Dec; 39(6):681-702. PubMed ID: 33040223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction and application of dynamic protein interaction network based on time course gene expression data.
    Wang J; Peng X; Li M; Pan Y
    Proteomics; 2013 Jan; 13(2):301-12. PubMed ID: 23225755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CPredictor3.0: detecting protein complexes from PPI networks with expression data and functional annotations.
    Xu Y; Zhou J; Zhou S; Guan J
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):135. PubMed ID: 29322927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying protein complexes based on an edge weight algorithm and core-attachment structure.
    Wang R; Liu G; Wang C
    BMC Bioinformatics; 2019 Sep; 20(1):471. PubMed ID: 31521132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SAlign-a structure aware method for global PPI network alignment.
    Ayub U; Haider I; Naveed H
    BMC Bioinformatics; 2020 Nov; 21(1):500. PubMed ID: 33148180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A three-phase method for identifying functionally related protein groups in weighted PPI networks.
    Grbić M; Matić D; Kartelj A; Vračević S; Filipović V
    Comput Biol Chem; 2020 Jun; 86():107246. PubMed ID: 32339914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Twadn: an efficient alignment algorithm based on time warping for pairwise dynamic networks.
    Zhong Y; Li J; He J; Gao Y; Liu J; Wang J; Shang X; Hu J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):385. PubMed ID: 32938373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.
    Mehranfar A; Ghadiri N; Kouhsar M; Golshani A
    Comput Biol Med; 2017 Sep; 88():18-31. PubMed ID: 28672176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein complexes detection based on node local properties and gene expression in PPI weighted networks.
    Yu Y; Kong D
    BMC Bioinformatics; 2022 Jan; 23(1):24. PubMed ID: 34991441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.