BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29668344)

  • 1. Phenotypic plasticity of mesenchymal stem cells is crucial for mesangial repair in a model of immunoglobulin light chain-associated mesangial damage.
    Herrera GA; Teng J; Zeng C; Xu H; Liang M; Alexander JS; Liu B; Boyer C; Turbat-Herrera EA
    Ultrastruct Pathol; 2018; 42(3):262-288. PubMed ID: 29668344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glomerulopathic light chain-mesangial cell interactions modulate in vitro extracellular matrix remodeling and reproduce mesangiopathic findings documented in vivo.
    Herrera GA; Russell WJ; Isaac J; Turbat-Herrera EA; Tagouri YM; Sanders PW; Picken MM; Dempsey S
    Ultrastruct Pathol; 1999; 23(2):107-26. PubMed ID: 10369104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal Models of Light Chain Deposition Disease Provide a Better Understanding of Nodular Glomerulosclerosis.
    Herrera GA; Turbat-Herrera EA; Teng J
    Nephron; 2016; 132(2):119-36. PubMed ID: 26794829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Healing the damaged mesangium in nodular glomerulosclerosis using mesenchymal stem cells (MSCs): Expectations and challenges.
    Herrera GA; Zeng C; Turbat-Herrera EA; Teng J
    Ultrastruct Pathol; 2016; 40(2):61-70. PubMed ID: 27031175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated expression of glomerular extracellular matrix proteins and beta 1 integrins in monoclonal light chain-related renal diseases.
    Turbat-Herrera EA; Isaac J; Sanders PW; Truong LD; Herrera GA
    Mod Pathol; 1997 May; 10(5):485-95. PubMed ID: 9160315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix metalloproteinases and mesangial remodeling in light chain-related glomerular damage.
    Keeling J; Herrera GA
    Kidney Int; 2005 Oct; 68(4):1590-603. PubMed ID: 16164636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AL-amyloidosis and light-chain deposition disease light chains induce divergent phenotypic transformations of human mesangial cells.
    Keeling J; Teng J; Herrera GA
    Lab Invest; 2004 Oct; 84(10):1322-38. PubMed ID: 15286662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different types of glomerulopathic light chains interact with mesangial cells using a common receptor but exhibit different intracellular trafficking patterns.
    Teng J; Russell WJ; Gu X; Cardelli J; Jones ML; Herrera GA
    Lab Invest; 2004 Apr; 84(4):440-51. PubMed ID: 14990980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease.
    Herrera GA; Teng J; Turbat-Herrera EA; Zeng C; Del Pozo-Yauner L
    Kidney Int Rep; 2020 Nov; 5(11):1870-1893. PubMed ID: 33163710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro model of light chain deposition disease.
    Keeling J; Herrera GA
    Kidney Int; 2009 Mar; 75(6):634-45. PubMed ID: 18923384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenesis of glomerulosclerosis in light chain deposition disease. Role for transforming growth factor-beta.
    Zhu L; Herrera GA; Murphy-Ullrich JE; Huang ZQ; Sanders PW
    Am J Pathol; 1995 Aug; 147(2):375-85. PubMed ID: 7639331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesangial cells as amyloid factory: a unique contribution of animal models.
    Sirac C; Bridoux F
    Kidney Int; 2014 Oct; 86(4):669-71. PubMed ID: 25265948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion of amyloid fibrils to the extracellular space in experimental mesangial AL-amyloidosis: transmission and scanning electron microscopy studies and correlation with renal biopsy observations.
    Teng J; Turbat-Herrera EA; Herrera GA
    Ultrastruct Pathol; 2014 Apr; 38(2):104-15. PubMed ID: 24460740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro AL-amyloid formation by rat and human mesangial cells.
    Tagouri YM; Sanders PW; Picken MM; Siegal GP; Kerby JD; Herrera GA
    Lab Invest; 1996 Jan; 74(1):290-302. PubMed ID: 8569193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mesangium as a target for glomerulopathic light and heavy chains: pathogenic considerations in light and heavy chain-mediated glomerular damage.
    Keeling J; Herrera GA
    Contrib Nephrol; 2007; 153():116-34. PubMed ID: 17075227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoclonal light chain--mesangial cell interactions: early signaling events and subsequent pathologic effects.
    Russell WJ; Cardelli J; Harris E; Baier RJ; Herrera GA
    Lab Invest; 2001 May; 81(5):689-703. PubMed ID: 11351041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An animal model of glomerular light-chain-associated amyloidogenesis depicts the crucial role of lysosomes.
    Teng J; Turbat-Herrera EA; Herrera GA
    Kidney Int; 2014 Oct; 86(4):738-46. PubMed ID: 24786709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of translational research advancing the understanding of the pathogenesis of light chain-mediated glomerulopathies.
    Teng J; Turbat-Herrera EA; Herrera GA
    Pathol Int; 2007 Jul; 57(7):398-412. PubMed ID: 17587239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha8 integrin in glomerular mesangial cells and in experimental glomerulonephritis.
    Hartner A; Schöcklmann H; Pröls F; Müller U; Sterzel RB
    Kidney Int; 1999 Oct; 56(4):1468-80. PubMed ID: 10504498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesangial cell hillocks. Nodular foci of exaggerated growth of cells and matrix in prolonged culture.
    Sterzel RB; Lovett DH; Foellmer HG; Perfetto M; Biemesderfer D; Kashgarian M
    Am J Pathol; 1986 Oct; 125(1):130-40. PubMed ID: 3535527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.