These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29668729)
1. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. Sakr S; Elshawi R; Ahmed A; Qureshi WT; Brawner C; Keteyian S; Blaha MJ; Al-Mallah MH PLoS One; 2018; 13(4):e0195344. PubMed ID: 29668729 [TBL] [Abstract][Full Text] [Related]
2. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
3. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project. Alghamdi M; Al-Mallah M; Keteyian S; Brawner C; Ehrman J; Sakr S PLoS One; 2017; 12(7):e0179805. PubMed ID: 28738059 [TBL] [Abstract][Full Text] [Related]
4. On the interpretability of machine learning-based model for predicting hypertension. Elshawi R; Al-Mallah MH; Sakr S BMC Med Inform Decis Mak; 2019 Jul; 19(1):146. PubMed ID: 31357998 [TBL] [Abstract][Full Text] [Related]
5. Using Machine Learning to Define the Association between Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). Al-Mallah MH; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Blaha MJ; Ahmed HM; Ehrman JK; Keteyian SJ; Sakr S Am J Cardiol; 2017 Dec; 120(11):2078-2084. PubMed ID: 28951020 [TBL] [Abstract][Full Text] [Related]
6. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease. Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840 [TBL] [Abstract][Full Text] [Related]
8. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905 [TBL] [Abstract][Full Text] [Related]
9. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
10. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733 [TBL] [Abstract][Full Text] [Related]
11. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture. Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589 [TBL] [Abstract][Full Text] [Related]
12. Machine learning algorithms to predict seizure due to acute tramadol poisoning. Behnoush B; Bazmi E; Nazari SH; Khodakarim S; Looha MA; Soori H Hum Exp Toxicol; 2021 Aug; 40(8):1225-1233. PubMed ID: 33538187 [TBL] [Abstract][Full Text] [Related]
14. Relation of Isolated Low High-Density Lipoprotein Cholesterol to Mortality and Cardiorespiratory Fitness (from the Henry Ford Exercise Testing Project [FIT Project]). Whelton SP; Dardari Z; Handy Marshall C; Ahmed H; Brawner CA; Ehrman JK; Keteyian SJ; Mallah MA; Blaha MJ Am J Cardiol; 2019 May; 123(9):1429-1434. PubMed ID: 30827489 [TBL] [Abstract][Full Text] [Related]
15. Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing. Mandsager K; Harb S; Cremer P; Phelan D; Nissen SE; Jaber W JAMA Netw Open; 2018 Oct; 1(6):e183605. PubMed ID: 30646252 [TBL] [Abstract][Full Text] [Related]
16. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study. Kweon S; Lee JH; Lee Y; Park YR J Med Internet Res; 2020 Aug; 22(8):e18387. PubMed ID: 32773372 [TBL] [Abstract][Full Text] [Related]
17. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. Rau CS; Kuo PJ; Chien PC; Huang CY; Hsieh HY; Hsieh CH PLoS One; 2018; 13(11):e0207192. PubMed ID: 30412613 [TBL] [Abstract][Full Text] [Related]